• Title/Summary/Keyword: Solar cell application

검색결과 328건 처리시간 0.03초

레이저 조사에 따른 실리콘 솔라셀의 출력 특성 (Electric Power Charging of Silicon Solar Cells using a Laser)

  • 이후승;배한성;김성범;주윤재;김정오;노지환
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

고효율 결정질 실리콘 태양전지 적용을 위한 실리콘 산화막 표면 패시베이션 (A Review on Silicon Oxide Sureface Passivation for High Efficiency Crystalline Silicon Solar Cell)

  • 전민한;강지윤;;박철민;송진수;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.321-326
    • /
    • 2016
  • Minimizing the carrier recombination and electrical loss through surface passivation is required for high efficiency c-Si solar cell. Usually, $SiN_X$, $SiO_X$, $SiON_X$ and $AlO_X$ layers are used as passivation layer in solar cell application. Silicon oxide layer is one of the good passivation layer in Si based solar cell application. It has good selective carrier, low interface state density, good thermal stability and tunneling effect. Recently tunneling based passivation layer is used for high efficiency Si solar cell such as HIT, TOPCon and TRIEX structure. In this paper, we focused on silicon oxide grown by various the method (thermal, wet-chemical, plasma) and passivation effect in c-Si solar cell.

태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향 (The Effects of PV Cell's Electrical Characteristics for PV Module Application)

  • 김승태;강기환;박지홍;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF

태양전지 셀의 고온에 의한 전기적 특성 변화 연구 (A study of the electrical characteristics changes of PV cell at high temperature)

  • 정태희;신준오;김태범;강기환;안형근;한득영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.387-389
    • /
    • 2009
  • PV module is manufactured by several steps such as cell sort, tabbing & string, lay-up, lamination processes. In oder to manufacture PV module, solar cell must be placed in high temperature. Soldering Process in high temperature is important because it directly influences electric output performance changes of solar cell in solar cell module. We consider applying momentary high temperature, while soldering solar cell, and expect change electric characteristics of PV module. In this paper, we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. From these results, we confirm with application of high temperature, $I_{sc}$ increase and $V_{oc}$ slightly decreases.

  • PDF

SPA에 의한 동적인 보트의 태양전지 효율 분석 (Efficiency Analysis Solar Cell of the Dynamic Boat's by SPA)

  • 한종호;이장명
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1529-1536
    • /
    • 2011
  • Recently, worldwide government policy is pursuing saving energy and preservation. add to this, the solar cells are getting the spotlight nonpolluting energy source, using a variety of products for solar cell. in this paper, we'll make solar tracking system for suitable of dynamic boat. we knew that general boats are using fixed solar cell, it's first time to use tracking system of solar cells for boats so it is hard to application. To solve this problem in this paper we use to a magnetic compass and GPS for suitable solar tracking system of dynamic movement and to analyze fixed and tracking solar system. frist. solar tracking device is designed two-axis control system. one-axis control system is taken a magnetic compass for making efficiency defence solar tracking sensor, two-axis control system apply GPS latitude and longitude data for SPA(Solar position algorithm) so we know the azimuth and altitude. it analyze data value of accuracy comparison from result. so the proposed algorithm confirm to have validity.

우주선용 GaAs/Ge 태양전지에 관한 연구 (Study on GaAs/Ge Solar Cell for Space Use)

  • 이만근;박이준;최영희;전흥석
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국태양에너지학회, 한국에너지공학회 1993년도 춘계 공동학술발표회 초록집
    • /
    • pp.53-59
    • /
    • 1993
  • The interests on GaAs solar cell grown on Ge substrates as an alternative of GaAs substrate arises from its very close lattice parameters, very small difference in thermal expansion coefficients, and much higher fracture toughness between GaAs and Ge. In addition, for many space power application, it would be a most attractive solar cell with high radiation resistance of GaAs and high reliability for the reverse current damage of Ge, and expecting the theoretical efficiency limit of the tandem GaAs/Ge solar cell is 34% under 1 Sun, AM 0, and 28$^{\circ}C$ condition. In this report, we have reviewed the performance and the manufacturing technics of GaAs/Ge solar cell, and current status of research in GaAs/Ge solar cell.

  • PDF

공공시설물 심미성 향상을 위한 CIGS 태양전지 적용 방안 연구 (A Study on the Application of CIGS Solar Cells to Improve the Aesthetics of Public Facilities)

  • 이샘;서지영;박수지;남원석;장중식
    • 한국융합학회논문지
    • /
    • 제12권12호
    • /
    • pp.235-243
    • /
    • 2021
  • 산업화와 동반한 환경문제가 세계적으로 대두되면서 특히 우리나라에서는 태양에너지와 풍력에너지가 실용화 단계에 접어들었다. 또한 태양전지를 활용한 심미성 향상에 대한 연구가 활발히 이루어지는 가운데 BIPV, CIGS등 투과가 가능한 태양전지 개발, 유연성과 색감을 가지고 있는 태양전지 개발이 그 예시이다. 이에 본 논문에서는 태양전지 개발 및 태양전지 기반의 공공시설물 설치 상승세에 발맞춰 심미성 향상을 위한 CIGS 태양전지를 활용한 공공시설물 디자인 가이드라인을 제시하고자 한다. 우선 태양전지에 관한 문헌조사와 태양전지를 활용한 공공시설물 사례조사를 통해 태양전지 적용의 적합성을 높이기 위한 구성요소를 도출했다. 그 다음 공공시설물 가이드라인 선행연구를 통해 평가원칙 정립과 디자인 가이드라인 초안을 작성했다. 이를 전문가 집단을 대상으로 3차례의 델파이조사를 실시하여 타당성을 검증했으며 최종적으로 공공디자인 심미성 향상을 위한 태양전지 적용 방안 디자인 가이드라인을 도출하였다. 향후 태양전지를 활용한 공공시설물의 접근성 및 인지성, 사용성, 형태 및 심미성, 지속가능성 및 에너지효율성, 도시경관과의 연속성 개선을 통한 심미성 향상의 기초자료로 활용되길 기대한다.

실외 발전을 위한 염료감응형 태양전지의 봉지재 개발 (Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power)

  • 기현철;홍경진
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

표면 플라즈몬 효과를 이용한 박막형 태양전지 효율향상 (Thin film solar cell efficiency improvement using the surface plasmon effect)

  • 변수환;소현준;유정훈
    • 정보저장시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.39-43
    • /
    • 2012
  • In spite of many advantages, the practical application of the thin film solar cell is restricted due to its low efficiency compared with the bulk type solar cells. This study intends to adopt the surface plasmon effect using nano particles to solve the low efficiency problem in thin film solar cells. By inserting Ag nano-particles in the absorbing layer of a thin film solar cell, the poynting vector value of the absorbing layer is increased due to the strong energy field. Increasing the value may give thin film solar cells chance to absorb more energy from the incident beam so that the efficiency of the thin film solar cell can be improved. In this work, we have designed the optimal shape of Ag nano-particle in the absorbing laser of a basic type thin film solar cell using the finite element analysis commercial package COMSOL. Design parameters are set to the particle diameter and the distance between each Ag nano-particle and by changing those parameters using the full factorial design variable set-up, we can determine optimal design of Ag nano-particles for maximizing the poynting vector value in the absorbing layer.

Down-Conversion Effect Applied to GaAs p-i-n Single Junction Solar Cell

  • 박준서;김지훈;고형덕;이기용;김정혁;한일기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.694-694
    • /
    • 2013
  • With the growing need of more effective energy harvesting, solar energy has been sought as one of the prominent candidates among the eco-friendly methods. Although many types of solar cells have been developed, the electronic conversion efficiency is limited by the material's physical properties: solar cells can only harvest solar energy from limited range in solar energy spectrum. To overcome this physical limit, we approached by using the down conversion effect, transforming the high energy photons to low energy photons, to the range the designated solar cell can convert to electronic energy. In our study, we have fabricated GaAs single junction solar cells and applied CdSe quantum dots for down-conversion. We examine the effects of such application on the solar cell efficiancy, fill-factor, JSC, VOC, etc.

  • PDF