Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.6.321

A Review on Silicon Oxide Sureface Passivation for High Efficiency Crystalline Silicon Solar Cell  

Jeon, Minhan (College of Information and Communication Engineering, Sungkyunkwan University)
Kang, Jiyoon (College of Information and Communication Engineering, Sungkyunkwan University)
Balaji, Nagarajan (Department of Energy Science, Sungkyunkwan University)
Park, Cheolmin (Department of Energy Science, Sungkyunkwan University)
Song, Jinsoo (Division of Energy Convergence Engineering, Silla University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.6, 2016 , pp. 321-326 More about this Journal
Abstract
Minimizing the carrier recombination and electrical loss through surface passivation is required for high efficiency c-Si solar cell. Usually, $SiN_X$, $SiO_X$, $SiON_X$ and $AlO_X$ layers are used as passivation layer in solar cell application. Silicon oxide layer is one of the good passivation layer in Si based solar cell application. It has good selective carrier, low interface state density, good thermal stability and tunneling effect. Recently tunneling based passivation layer is used for high efficiency Si solar cell such as HIT, TOPCon and TRIEX structure. In this paper, we focused on silicon oxide grown by various the method (thermal, wet-chemical, plasma) and passivation effect in c-Si solar cell.
Keywords
Passivation; Chemical passivation; Plasma growth; Silicon oxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Fisher, M. R. Seacrist, and R. W. Standley, Proc. of the IEEE, 100, 1454 (2012). [DOI: http://dx.doi.org/10.1109/JPROC.2012.2189786]   DOI
2 ITRPV Working Group, International Technology Roadmap for Photovoltaic, 7 (2016).
3 H. Kumar, Royal Society of Chemistry, 4, 3779 (2013).
4 B. Hoex, J. Appl. Phys., 104, 113703 (2008). [DOI: http://dx.doi.org/10.1063/1.3021091]   DOI
5 A. K. Ray, Thin Solid Films, 84, 389 (1981). [DOI: http://dx.doi.org/10.1016/0040-6090(81)90174-7]   DOI
6 O. Schultz, A. Mette, M. Hermle, and S. W. Glunz, Prog. Photovoltaics, 16, 317 (2008). [DOI: http://dx.doi.org/10.1002/pip.814]   DOI
7 J. Benick, K. Zimmermann, J. Spiegelman, M. Hermle, and S. W. Glunz, Prog. Photovolt Res. Appl., 19, 361 (2011). [DOI: http://dx.doi.org/10.1002/pip.1020]   DOI
8 A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, Appl. Phys. Lett., 55, 1363 (1989). [DOI: http://dx.doi.org/10.1063/1.101596]   DOI
9 S. Mack, A. Wolf, A. Walczak, B. Thaidigsmann, E. Allan Wotke, J. J. Spiegelman, R. Preu, and D. Biro, Sol. Energ. Mat. Sol. C., 95, 2570 (2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.002]   DOI
10 W. D. Eades and R. M. Swanson, J. Appl. Phys., 58, 4267 (1985). [DOI: http://dx.doi.org/10.1063/1.335562]   DOI
11 M. J. Kerr and A. Cuevas, Semicond. Sci. Technol., 17, 35 (2002). [DOI: http://dx.doi.org/10.1088/0268-1242/17/1/306]   DOI
12 H. Sai, R. Imai, N. Yamamoto, T. Ishiwata, K. Arafune, Y. Ohshita, and M. Yamaguchi, Proc. of the 21st EUPVSEC, Dresden, 2006, p. 915
13 J. Zhao, Progress in Photovoltaics, 7, 471 (1999). [DOI:http://dx.doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7]   DOI
14 F. Feldmann, Sol. Energ. Mat. Sol. C., 120, 270 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2013.09.017]   DOI
15 J. B. Heng, IEEE Journal of Photovoltaics, 5, 82 (2015). [DOI: http://dx.doi.org/10.1109/JPHOTOV.2014.2360565]   DOI
16 V. D. Mihailetchi, Appl. Phys. Lett., 92, 063510 (2008). [DOI: http://dx.doi.org/10.1063/1.2870202]   DOI
17 N. E. Grant, Proc. of 24th European Photovoltaic Solar Energy Conference (Hamburg, Germany, 2009) p. 1676-1679.
18 W. Lu, Energy Procedia, 55, 805 (2014). [DOI: http://dx.doi.org/10.1016/j.egypro.2014.08.063]   DOI
19 T. Oikawa, Current Appl. Phys., 15, 1168 (2015). [DOI: http://dx.doi.org/10.1016/j.cap.2015.07.004]   DOI
20 J. W. Lee, Y. Li, and S. M. Sze, WSEAS Trans. Electron, 1.1, 72 (2004).
21 A. Masuda, Appl. Surf. Sci., 81, 277 (1994). [DOI: http://dx.doi.org/10.1016/0169-4332(94)90284-4]   DOI
22 B. C. Smith and H. H. Lamb, J. Appl. Phys., 83, 7635 (1998). [DOI: http://dx.doi.org/10.1063/1.367881]   DOI
23 F. Feldmann, Sol. Energ. Mat. Sol. C., 131, 100 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.05.039]   DOI
24 A. Moldovan, Energy Procedia, 55, 834 (2014). [DOI: http://dx.doi.org/10.1016/j.egypro.2014.08.067]   DOI
25 A. Moldovan, Sol. Energ. Mat. Sol. C., 142, 123 (2015). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.06.048]   DOI