• 제목/요약/키워드: Solar Photovoltaic Energy

검색결과 1,271건 처리시간 0.03초

발광형 태양광 집광기 최신 연구 동향 (Recent Progress and Prospect of Luminescent Solar Concentrator)

  • 송형준
    • 한국태양에너지학회 논문집
    • /
    • 제39권4호
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

PV용 투명유리와 G/G모듈의 광학적 특성 평가 및 분석 (Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application)

  • 김경수;강기환;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, we analyze the electrical optical characteristics of transparent glass for photovoltaic and glass-glass module application. The elemental facts from raw glass to laminated glass with solar cells are analyzed using UV spectrophotometer and spectroradiometer. From the data of transmittance and reflectance, the optimum PV module processing condition and selection of material for fabrication should be considered deeply for obtaining high module efficiency. Also we introduce two glasses which has 2%$\sim$4% higher transmittance using coating technology with anti-reflection material. From this experiment, we try to give some basic information for PV module manufacturing industry. The detail description is specified as the following paper.

유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조 (Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates)

  • 장은석;김솔지;이지은;안승규;박주형;조준식
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

태양광발전 에너지이용시스템의 계측과 평가에 관한 연구 (A Study on the Instrumentation and Valuation of Photovoltaic Energy Utilization System)

  • 정현상;백형래;조금배;김동휘;김대곤;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.496-499
    • /
    • 1991
  • Photovoltaic system has very low energy conversion efficiency and the output characteristics of solar cell is varied by the Insolation quantity and the temperature. In order to improve the efficiency of photovoltaic system, the energy which has got from solar cell must be use maximum. In this paper, it was stimultaneous executed both MPPT control and instrumentation in order that the operating point of solar cell is located maximum power point, using the PWM inverter and micro-computer, which is for the purpose of acquiring maximum power from the solar cell. As a result, maximum power point tracking had carried out and the efficiency of photovoltaic system improved, even if insolation quantity and the temperature are varied.

  • PDF

울산지역의 태양광에너지의 활용방안 (Application Strategies of Photovoltaic Energy in Ulsan)

  • 이관호;심광열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.320-323
    • /
    • 2009
  • Weather data is an important variable for the estimation value of the program for evaluating energy performance. The difference in data value of major weather elements used in weather data (temperature, insolation amount) were compared and analyzed. It was found that temperature showed similar values but insolation amount took different values. Especially in Ulsan, since the Meteorological Association does not measure insolation amount. To optimize the incident solar radiation, the solar azimuth angles are needed for solar photovoltaic systems. Test results shows that the $60^{\circ}$installation angel higher efficient than the $30^{\circ}$ installation angel in winter.

  • PDF

반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가 (Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

도로용 태양광 모듈 실증 모델 결과 분석 (Analysis of Actual Test for Road Solar Module)

  • 이종환;김봉석;신동휘;한수희;노재형
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.466-471
    • /
    • 2019
  • Road photovoltaic power generation is a technology that combines photovoltaic power generation while maintaining the function of the existing road by installing special photovoltaic modules on it. In this paper, we developed three types of modules and structures suitable for sidewalk blocks and element technology for the development of a solar road module for a sidewalk and bicycle road. The road solar potential in Korea is 10 GW. After analyzing the daily data obtained after the construction of a 10 kW solar road testbed, it was found that its utilization rate compared to the general photovoltaic energy is 80%.

Challenges of decarbonizing electricity in Indonesia: Barriers in the adoption of solar PV

  • Pradityo Sukarso, Adimas
    • 한국태양광발전학회지
    • /
    • 제4권3호
    • /
    • pp.27-35
    • /
    • 2018
  • Around the world, there are increasing efforts underway to decarbonize the electricity generation system to mitigate the environmental impacts including climate change. While Indonesia has a huge potential for new and renewable energy, particularly solar photovoltaic, Indonesia has been largely dependent on fossil fuels. As of 2017, the installed capacity for solar photovoltaic in Indonesia was 78.5MW and this was only 0.04% of the theoretical solar potential, which is around 207.9GW($4.8kWh/m^2/day$). With the case of solar photovoltaic, this paper examined the reasons of low adoption of the technology and the challenges of energy transition in Indonesia from the policy and institutional perspectives.

  • PDF

태양에너지 가용잠재량 자원지도 분석 (The Analysis of a Potential Solar Energy Resource Map)

  • 정종철
    • 환경영향평가
    • /
    • 제21권4호
    • /
    • pp.573-579
    • /
    • 2012
  • Many countries have recently been expanding efforts for low-carbon global economy to solve the problem of global warming. Development and research for various types of new reusable energy is on the rise throughout the world. The most promising source of energy is the solar photovoltaic energy and the government take an initiative to establish both short-term and long-term policies to develop the solar energy potential resource map. The solar energy and industrialize area researched by GIS methods for optimum site for solar power transfer system. This study attempts to address the hot issue of the development and suitability of the solar photovoltaic energy site using GIS spatial analysis. We need to analyze and describe the solar technology, green energy policies and the energy market trend of the field.

실내체육관의 신재생에너지 공급의무비율에 따른 시스템 최적화 연구 (A Study on System Optimization according to the Supply Obligations Rate of New and Renewable Energy at an Indoor Gymnasium)

  • 박윤하;김윤호;원안나;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.51-60
    • /
    • 2015
  • In statutes on the promotion of distribution of new and renewable energy, which were revised in 2014, daylight system and fuel cell were added in addition to existing new and renewable energy sources. This study, therefore, aimed at setting up targets for the introduction of daylight system and analyzing the installation rate of new and renewable energy which can be provided by daylight system for the aggressive use of daylight system, thereby deducting the optimal combination ratio with other new and renewable energy sources. The results of the study are as follows. First, when a prism-shaped daylight system was installed to a round indoor gymnasium among domestic indoor gymnasiums, out of a supply obligations allotment rate of 15% of new and renewable energy, the rate of daylight system was basically set at 2.5%. Second, therefore, with daylight system coming first, the lacked supply obligations rate was taken up by solar photovoltaic, solar heat and geothermal heat. In addition, using the KRESS Program, economic, technical, environmental and complexity evaluations for the upper 5% was made, deducting the optimal ratio of the system. The results produced the following optimal combination ratios: solar photovoltaic (83.3%) in economic evaluation, solar heat (8.3%) and geothermal heat (75%) in technical evaluation, solar photovoltaic (83.3%) in environmental evaluation, and solar photovoltaic (83.3%, the same as in economic evaluation) in complexity evaluation.