• Title/Summary/Keyword: Solar Photovoltaic Energy

Search Result 1,271, Processing Time 0.026 seconds

Resource Use Efficiency of Electricity Sector in the Maldives

  • SHUMAIS, Mohamed
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.1
    • /
    • pp.111-121
    • /
    • 2020
  • The study measures the resource use efficiency of diesel based power generation in the Maldives and analyses factors which influence efficiency levels. Stochastic frontier analysis (SFA) technique is applied to data on 30 plants over two year period from 2016 to 2017. The study finds that technical efficiency scores varies from 0.44 to 0.98 across power plants. About 33 percent of the plants have scores below the mean technical efficiency score of 0.87. Empirical results indicate ownership and use of solar photovoltaic (PV) have an influence on improving efficiency levels. Privately owned power plants in resort islands obtained higher technical efficiency scores compared to public and community owned power plants. This is a significant finding as the first study that used power plants in tourist sector in a comparative study. Size of the power plants was not found significant, but relatively small installed capacities can also be efficient. This finding is important because in many inhabited islands installed capacities remain oversized compared to the load. The benchmarking exercise offers model power plants that are relatively efficient, for other power plants and policy makers in small islands to learn from.

A study on the application of BIPV to the Apartment Building (BIPV의 아파트 건물 적용 가능성에 대한 연구)

  • Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • Regarding to the Domestic housing politics to improve residing environment and effective use of country land, apartment buildings have been constructed since early of 1970s. Now apartment is taking over 50% out of entire housing in Korea. In the view point of PV application to the apartment, PV has amny advantages because of the wideness of out-walls and high floors building in APT. Therefore, if APT could use the electricity produced by BIPV, we can solve more easily environment and energy problems caused by housing. The research conclusion by analysing conditions and application method to introduce BIPV application to APT in near future is as below. -The out look of APT has been developed periodically and recently gable roof or canopy is popular which PV installation is more favorable. -For Balcony part with double skin facade sassy window, It has a preferable condition to install on the wall depending on the window direction. -In case of shorter distance between buildings due to high ratio of outside measurement, it is more desirable to install PV on the roof than on the wall of Apartment by considering low solar altitude. -Also depending on the direction of APT building, it is more effective and productive in electricity in the broad surface of side wall of APT. -In case of superhigh floor APT where facade system is mostly double skin facade of curtain wall system, PV module can replace the traditional curtain wall and will reduce architectural materials and obtain various out look design thereof.

Multi-Central System for Large Scale PV Power Generation (대용량 태양광 발전용 멀티센트럴 시스템)

  • Park, Jong-Hyoung;Ko, Kwang-Soo;Kim, Heung-Geun;Nho, Eui-Cheol;Chun, Tae-Won
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.427-432
    • /
    • 2012
  • This paper proposes efficient operation method of PV system consisted of multi-central which is suitable for large scale system. The multi-central system used switch at a DC-link and applied proposed algorithm can improve the efficiency and the reliability on the existing system. This algorithm, with advantage of Multi-Central system can minimize the effect of different characteristic of each PV array due to a shadow or damaged PV cell. Each system is analysed and maximum power point tracking control, DC-link voltage control and output current control is used commonly. The validity is verified after comparing of the existing system and proposed system by simulation.

  • PDF

A Study on the Economic of Electrical Storage Device of Stand Alone PV/Wind Hybrid System Based upon Sunless Days (부조일에 따른 독립형 태양광 풍력 복합발전 시스템에서 전기저장장치의 경제성에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.16-23
    • /
    • 2012
  • This paper relates to a study on the economic of electrical storage device for supplying power in sunless days, in the stand alone PV/Wind hybrid system, which it is applied to separate houses. In a photovoltaic/wind hybrid power system used in a separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. For example, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to supply power stably by only the battery based upon pre-estimated sunless days. Accordingly, in order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage.

Texture, Morphology and Photovoltaic Characteristics of Nanoporous F:SnO2 Films

  • Han, Deok-Woo;Heo, Jong-Hyun;Kwak, Dong-Joo;Han, Chi-Hwan;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.93-97
    • /
    • 2009
  • The nanoporous $F:SnO_2$ materials have been prepared through the controlled hydrolysis of fluoro(2-methylbutan-2-oxy)di(pentan-2,4-dionato)tin followed by thermal treatment at $400-550^{\circ}C$. The main IR features include resonances at 660, 620 and 540 cm-1. From the TG-DTG result, three main mass losses of 6.5, 13.3 and 3.8 at 81, 289 and $490^{\circ}C$ are observed between 50 and $650^{\circ}C$ yielding a final residue of 76.0%. The size of Sn $O_2$ nanoparticles rose from 5 nm to 10-12 nm as the temperature of thermal treatment is increased from 400 to $550^{\circ}C$.

A Study on the CIGS cells with Na-doped Mo back contact (Na이 첨가된 Mo 전극을 이용한 CIGS 박막 태양전지 연구)

  • Yun, Jae-Ho;Kim, Ki-Hwan;Kim, Min-Sik;Ahn, Byung-Tae;Ahn, Se-Jin;Lee, Jeong-Chul;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.218-221
    • /
    • 2006
  • The photovoltaic properties of CIES cells on alumina substrate were improved by using the Na-doped Mo as theabotom layer of hilo back contact. Na was supplied to the CIGS bulk region from alumina/Na-doped Mo/Mo/alumina? structure, as same assimilar to the Na diffusion from soda-lime glass. The content diffusion of Na from Na-doped bfo was smaller more controlled than that from SLG. These Our results indicate that Na-doped bfo act as Na source material and contents of Na amount can be controlled without the use of an alkali barrier layer. The best CIGS solar cell with conversion efficiency of 13.34%, $J_{sc}=34.62mA/cm^2,\;V_{oc}=0.58V$ and FF=66% for an active area of $0.45cm^2$ on the alumina substrate was obtained in the condition of for 100nm Na-doped Mo/1000nm Mo.

  • PDF

Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells

  • Choi, Yoon-Suk;Lee, Woo-Hyung;Kim, Jae-Ryoung;Lee, Sang-Kyu;Shin, Won-Suk;Moon, Sang-Jin;Park, Jong-Wook;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.417-423
    • /
    • 2011
  • A series of new quinoxaline-based thiophene copolymers (PQx2T, PQx4T, and PQx6T) was synthesized via Yamamoto and Stille coupling reactions. The $M_ws$ of PQx2T, PQx4T, and PQx6T were found to be 20,000, 12,000, and 29,000, with polydispersity indices of 2.0, 1.2, and 1.1, respectively. The UV-visible absorption spectra of the polymers showed two distinct absorption peaks in the ranges 350 - 460 nm and 560 - 600 nm, which arose from the ${\pi}-{\pi}^*$ transition of oligothiophene units and intramolecular charge transfer (ICT) between a quinoxaline acceptor and thiophene donor. The HOMO levels of the polymer ranged from -5.37 to -5.17 eV and the LUMO levels ranged from -3.67 to -3.45 eV. The electrochemical bandgaps of PQx2T, PQx4T, and PQx6T were 1.70, 1.71, and 1.72 eV, respectively, thus yielding low bandgap behavior. PQx2T, PQx4T, and PQx6T had open circuit voltages of 0.58, 0.42, and 0.47 V, and short circuit current densities of 2.9, 5.29 and 9.05 mA/$cm^2$, respectively, when $PC_{71}BM$ was used as an acceptor. For the solar cells with PQx2T-PQx6T:$PC_{71}BM$ (1:3) blends, an increase in performance was observed in going from PQx2T to PQx6T. The power conversion efficiencies of PQx2T, PQx4T, and PQx6T devices were found to be 0.69%, 0.73%, and 1.80% under AM 1.5 G (100 mW/$cm^2$) illumination.

Reactive Power Variation Method for Anti-islanding Using Digital Phase-Locked-Loop (DPLL을 이용한 능동적 단독운전방지를 위한 무효전력변동법)

  • Lee, Ki-Ok;Yu, Byung-Gu;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. There has been an argument that it may be a non-issue in practice because the probability of islanding is extremely low. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an islanding can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficiently to cause a trip, plus the time required to execute a trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. Third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an islanding. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. Therefore the verification of anti-islanding performance is strongly needed. In this paper, improved RPV method is proposed through considering power quality and anti-islanding capacity of grid-connected single-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation results are verified.

Model-based Efficiency Analysis for Photovoltaic Generation O&M: A Case Study (태양광발전 운전 및 유지보수를 위한 모델기반 효율분석: 사례연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.405-412
    • /
    • 2022
  • This paper studies the method of estimating power loss and classifying the factors for improving the power generation efficiency through O&M. It is installed under various climatic conditions worldwide, operational and maintenance technologies suitable for the characteristics of the installation location are required. Existing studies related to solar power generation efficiency have been actively quantifying the impact on short-term losses by environmental factors such as high temperature, dust accumulation, precipitation, humidity, and wind speed, but analysis of the overall impact from a long-term operation perspective is limited. In this study, the potential for efficiency improvement was analyzed by re-establishing a loss classification system according to the power flow of solar power to derive a comprehensive efficiency model for long-term operation and estimating power loss through a case study for each region where climate conditions are classified. As a result of the analysis, the average annual potential for improving soiling loss was 26.9%, Death Valley 7.2%, and Seoul 3.8%. Aging losses was 6.6% in the 20th year as a cumulative. The average annual potential due to temperature loss was 2.9 % for Doha, 1.9% for Death Valley, and 0.2% for Seoul.

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.