• Title/Summary/Keyword: Solar Photovoltaic Energy

Search Result 1,274, Processing Time 0.027 seconds

A study on the applicability of green energy in the Aids to Navigation (해양교통시설의 친환경 에너지 시스템 적용 가능성에 관한 연구)

  • Han, Chaang-Soo;Yoon, Jung-In;Park, Jung-Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.397-401
    • /
    • 2009
  • On the crisis of international economy, the government is making an effort to seek economic growing motivation with the method of overcoming economic crisis and 'low carbon green growth'. Furthermore, to promote maritime vessel traffic service related inefficient energy wastage was revealed and eco-friendly alternative energy was accepted because of high price of oil in the beginning of 2008. In this situation, I'm going to discuss the possibility of eco-friendly energy system in maritime vessel traffic service with the way of cutting the budget and expansion of solar power generation system which was promoted to meet governmental 'energy saving plan for high price of oil'.

  • PDF

The Study on the Cell Electrochemical Properties with Increasing Water content in Dye-Sensitized Solar cells (염료 감응형 태양전지에서 수분의 함량에 따른 셀의 전기 화학적 특성 연구)

  • Seo, Hyun Woo;Kim, Dong Min
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.289-296
    • /
    • 2014
  • Here, we have studied the effect of water added electrolyte on the photovoltaic performance of dye-sensitized solar cells (DSSCs). It was found that open-circuit voltage ($V_{oc}$) increased and short-circuit current density ($j_{sc}$) decreased with the increase of the amount of added water in the electrolyte of the DSSCs. Electrochemical impedance spectroscopy (EIS) study showed that the electrolyte with added water shifted the dye loaded $TiO_2$ conduction band upward that eventually increased $V_{oc}$ of the cells. On the other hand, the upward shift of $TiO_2$ conduction band decreased the driving force for the electron injection from the lowest unoccupied molecular orbital (LUMO) of the dye molecules to the conduction band of $TiO_2$ that resulted in decreased $j_{sc}$.

A Study on the Development of BIPV Module Equipped with Vacuum Glass for Improved Thermal Performance (단열성능 개선을 위한 진공유리가 부착된 BIPV Module 개발에 관한 연구)

  • Eom, Jae-Yong;Lee, Hyun-Soo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.44-52
    • /
    • 2014
  • The main purpose of this paper is to develop the new BIPV module equipped with vacuum glass. Beacuse BIPV module has a function of architectural materials, thermal and PV performance should be simultaneously evaluated. To improve the thermal performance of BIPV module, this study developed BIPV module equipped with a vacuum glass. Those BIPV module was tested with a variety of encapsulants. The results are as follows. When a vacuum glass is laminated with EVA or PVB, it was broken. The reason seems to be bending by unbalance of heat expansion with center and edge of vacuum glass. In case of lamination with resin, there is no breakage and no bending of vacuum glass. Because production was conducted in low pressure & low temperature conditions. And it was also found that vacuum glass does not interfere with the UV curing process.

Performance Evaluation of Anti-Reflection Coating on Photovoltaic Modules (태양광 모듈의 반사방지 코팅 성능 평가)

  • Kang, Soyeon;Kim, Juhee;Kim, Jungsik;Oh, Wonwook;Chan, Sungll
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we evaluated the effect of a silica-based Anti-Reflection(AR) coating for PV modules. The coating technique can be easily applied to large-scale PV modules at room temperature with improvements of the optical properties that is qualified by the optical transmission measurements on the coated cover glass of the modules. The power improvement of the large-scale PV modules shows the increasing about 2.4% at standard condition of the coating technique on average. To improve the AR coating effect of the PV modules, we have characterized the individual PV modules by the measurements of DC power output, modified performance ratio(PRm) and the regression. The results show that the significant improvements of the AR coating effect are 6.4%, 5.5% and 4.5% of increasing of the performances by using the measurements of DC power output, modified performance ratio(PRm) and the regression, respectively.

Time Dependent Degradation of Cell in Dye-Sensitized Solar Cell (염료 감응형 태양전지에서 시간의 경과에 따른 셀의 특성 저하 연구)

  • Seo, Hyun Woo;Kim, Ki Soo;Beak, Hyun Duk;Kim, Dong Min
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.421-427
    • /
    • 2013
  • We report on the time dependent degradation of cell in dye-sensitized solar cells (DSSC). The photovoltaic performance of DSSC over a period of time was investigated in liquid electrolyte based on triiodide/iodide during six days. It was found that the short circuit current density ($j_{sc}$) of the cell dropped from 9.9 to $7mA/cm^2$ while efficiency (${\eta}$) of the cell decreased from 4.4 to 3.3%. The parameters corresponding to fundamental electronic and ionic processes in a working DSSC are determined from the electrochemical impedance spectrascopy (EIS) at open-circuit potential ($V_{oc}$). EIS study of the DSSC in the this work showed that the electron life time ${\tau}_r$ and chemical capacitance $C_{\mu}$ decreased significantly after six days. It was correlated the $j_{sc}$ and efficiency decreased after six days.

A study on the Application of Roof Integrated Photovoltaic System - Focused on the Optimal Length Ratio Calculation of System - (지붕 일체형 태양광 발전 시스템의 응용에 관한 연구 - 시스템의 최적길이비 산정을 중심으로 -)

  • Kim, Eui-Jong;Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.27-33
    • /
    • 2005
  • To improve the performance of the top-positioning space in buildings, we suggested the environment-friendly system integrating various design techniques in the previous paper. This work discussed to calculate the length of PV considering a part of metallic radiators for radiative cooling, an critical element of the whole system, for shading not to prevent the PV on roof from generating electricity. In the process of calculating the shading area, we used the geometrical relationship between the sun-rays and the variable roof. For general applications, we utilized DL, the ratio of the length of PV and that of metallic radiator on roof, as a design factor, and then used the maximum insolation and the specific insolation($200W/m^2$) to decide the distance off the axis of rotation. As a result, for DL, we found out the reasonable value of 1.0 with full covering, 1.2 with 90%, and 2.0 with 70% in PV covering.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Development and Application of A Computer-Based Integrated Data-Acquisition System for PV System Monitoring (태양광발전용 컴퓨터기반의 집속화된 데이터 취득 시스템의 개발 및 적용)

  • Yoo, H.C.;Song, J.Y.;Hwang, M.K.;Huh, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.67-76
    • /
    • 2002
  • Data-Acquisition systems are widely used in Photovoltaic(PV) system application in order to analyze and optimize the performance of PV systems. In this paper, the development of a computer-based data-acquisition system and its application are described. The proposed Computer-based data-acquisition System consists of a set of sensors for measuring both environmental and electrical parameters. The collected data are first conditioned and then interfaced to PC using a data-acquisition card. The Labview program was used to further process, display on the monitor at real time and store on the hard disk. We designed and installed two stand-alone PV systems to supply different loads, which in this case a Low Pressure Sodium(LPS) 55 [W] lamp and a electrodless 55 [W] lamp. When the proposed data acquisition system is applied on the designed PV systems, Optimized system operation methods are investigated to confirm a stable load availability and extend battery life time.

Improvement of Dye-Hydrogel Based Photovoltaics via Hydroquinone Electrolyte Mediators (하이드로퀴논 전해질 중간체에 의한 염료-수화젤 기반 태양전지 효율 향상)

  • KOO, HYUNG-JUN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.540-546
    • /
    • 2016
  • Besides high-efficient photovoltaics based on silicon, polymers, dye-sensitization and hybrid perovskite materials, biomimetic solar cells inspired by a leaf in nature has also been actively studied. As one example, a hydrogel based photovoltaics (HGPV) is a low-cost, environmentally friendly device and requires easy fabrication process. In this paper, the effect of hydroquinone additive on the performance of the HGPV is discussed. The photocurrent increases ~14 times upon the addition of hydroquinone into the agarose hydrogel medium. The photocurrent increase is maximum at the optimum dye concentration, while the photovoltage is barely affected by the dye concentration. The effect of the agarose content in the hydrogel and the types of dyes on the photocurrent is also investigated. Finally, it is shown that the photovoltaic performance of HGPV with hydroquinone can be drastically improved when $TiO_2$ film is deposited on the anode electrode.

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.