DOI QR코드

DOI QR Code

Improvement of Dye-Hydrogel Based Photovoltaics via Hydroquinone Electrolyte Mediators

하이드로퀴논 전해질 중간체에 의한 염료-수화젤 기반 태양전지 효율 향상

  • KOO, HYUNG-JUN (Dept. of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology)
  • 구형준 (서울과학기술대학교 화공생명공학과)
  • Received : 2016.07.23
  • Accepted : 2016.10.30
  • Published : 2016.10.30

Abstract

Besides high-efficient photovoltaics based on silicon, polymers, dye-sensitization and hybrid perovskite materials, biomimetic solar cells inspired by a leaf in nature has also been actively studied. As one example, a hydrogel based photovoltaics (HGPV) is a low-cost, environmentally friendly device and requires easy fabrication process. In this paper, the effect of hydroquinone additive on the performance of the HGPV is discussed. The photocurrent increases ~14 times upon the addition of hydroquinone into the agarose hydrogel medium. The photocurrent increase is maximum at the optimum dye concentration, while the photovoltage is barely affected by the dye concentration. The effect of the agarose content in the hydrogel and the types of dyes on the photocurrent is also investigated. Finally, it is shown that the photovoltaic performance of HGPV with hydroquinone can be drastically improved when $TiO_2$ film is deposited on the anode electrode.

Keywords

References

  1. D. M. Chapin, C. S. Fuller and G. L. Pearson. "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys., Vol. 25, No. 5, 1954, p. 676-677. https://doi.org/10.1063/1.1721711
  2. D. Wohrle and D. Meissner. "Organic Solar Cells", Adv. Mater., Vol. 3, No. 3, 1991, p. 129-138. https://doi.org/10.1002/adma.19910030303
  3. B. O'Regan and M. Gratzel. "A Low-cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal $TiO_2$ Films", Nature, Vol. 353, No. 6346, 1991, p. 737-740. https://doi.org/10.1038/353737a0
  4. S. Collavini, S. F. Volker and J. L. Delgado. "Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells", Angew. Chem. Int. Ed., Vol. 54, No. 34, 2015, p. 9757-9759. https://doi.org/10.1002/anie.201505321
  5. D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim and N.-G. Park. "Self-Formed Grain Boundary Healing Layer for Highly Efficient $CH_3NH_3PbI_3$ Perovskite Solar Cells", Nat. Energy, Vol. 1, No.16081, 2016, p. 1-8.
  6. N. Terasaki, N. Yamamoto, T. Hiraga, Y. Yamanoi, T. Yonezawa, H. Nishihara, T. Ohmori, M. Sakai, M. Fujii, A. Tohri, M. Iwai, Y. Inoue, S. Yoneyama, M. Minakata and I. Enami. "Plugging a Molecular Wire into Photosystem I: Reconstitution of the Photoelectric Conversion System on a Gold Electrode", Angew. Chem. Int. Ed., Vol. 48, No. 9, 2009, p. 1585-1587. https://doi.org/10.1002/anie.200805748
  7. T. N. Murakami, H. Saito, S. Uegusa, N. Kawashima and T. Miyasaka. "Water-based Dye-Sensitized Solar Cells: Interfacial Activation of $TiO_2$ Mesopores in Contact with Aqueous Electrolyte for Efficiency Development", Chem. Lett., Vol. 32, No. 12, 2003, p. 1154-1155. https://doi.org/10.1246/cl.2003.1154
  8. K. Jiang, H. Xie and W. Zhan. "Photocurrent Generation from $Ru(bpy)_{3}^\;{2+}$ Immobilized on Phospholipid/ Alkanethiol Hybrid Bilayers", Langmuir, Vol. 25, No. 18, 2009, p. 11129-11136. https://doi.org/10.1021/la901548b
  9. H.-J. Koo and O. D. Velev. "Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network", Sci. Rep., Vol. 3, No. 2357, 2013, p. 1-6.
  10. M.-H. Ham, J. H. Choi, A. A. Boghossian, E. S. Jeng, R. A. Graff, D. A. Heller, A. C. Chang, A. Mattis, T. H. Bayburt, Y. V. Grinkova, A. S. Zeiger, K. J. Van Vliet, E. K. Hobbie, S. G. Sligar, C. A. Wraight and M. S. Strano. "Photoelectrochemical Complexes for Solar Energy Conversion that Chemically and Autonomously Regenerate", Nat. Chem., Vol. 2, No. 11, 2010, p. 929-936. https://doi.org/10.1038/nchem.822
  11. M. Cheng, X. Yang, F. Zhang, J. Zhao and L. Sun. "Efficient Dye-Sensitized Solar Cells Based on Hydroquinone/Benzoquinone as a Bioinspired Redox Couple", Angew. Chem. Int. Ed., Vol. 51, No. 39, 2012, p. 9896-9899. https://doi.org/10.1002/anie.201205529
  12. H.-J. Koo, S. T. Chang, J. M. Slocik, R. R. Naik and O. D. Velev. "Aqueous Soft Matter Based Photovoltaic Devices", J. Mater. Chem., Vol. 21, No. 1, 2011, p. 72-79. https://doi.org/10.1039/C0JM01820A
  13. Man Gu Kang, Kwang Sun Ryu, Soon Ho Chang, Nam Gyu Park, Jin Sup Hong and K.-J. Kim. "Dependence of $TiO_2$ Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells", Bull. Korean Chem. Soc., Vol. 25, No. 5, 2004, p. 742-744. https://doi.org/10.5012/bkcs.2004.25.5.742
  14. C.-L. Wang, C.-M. Lan, S.-H. Hong, Y.-F. Wang, T.-Y. Pan, C.-W. Chang, H.-H. Kuo, M.-Y. Kuo, E. W.-G. Diau and C.-Y. Lin. "Enveloping Porphyrins for Efficient Dye-Sensitized Solar Cells", Energ. Environ. Sci., Vol. 5, No. 5, 2012, p. 6933-6940. https://doi.org/10.1039/c2ee03308a
  15. H.-J. Koo, S. T. Chang and O. D. Velev. "Ion-Current Diode with Aqueous Gel/$SiO_2$ Nanofilm Interfaces", Small, Vol. 6, No. 13, 2010, p. 1393-1397. https://doi.org/10.1002/smll.200902069