• Title/Summary/Keyword: Solar Panel Power

Search Result 174, Processing Time 0.023 seconds

Fuzzy Partitioning of Photovoltaic Solar Power Patterns

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.5-10
    • /
    • 2022
  • Photovoltaic systems provide a reliable green energy solution. The sustainability and low-maintenance of Photovoltaic systems motivate the integration of Photovoltaic systems into the electrical grid and further contribute to a greener environment, as the system does not cause any pollution or emissions. Developing methodologies based on machine learning techniques to assist in reducing the burden of studies related to integrating Photovoltaic systems into the electric grid are of interest. This research aims to develop a methodology based on a unsupervised machine learning algorithm that can reduce the burden of extensive studies and simulations related to the integration of Photovoltaic systems into the electrical grid.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

Analysis on the power generation efficiency by the direct sunlight (태양광 발전 시스템별 직사광선에 의한 발전효율 분석)

  • Lee, Jaydy;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.89-91
    • /
    • 2008
  • The photovoltaic industry is growing at a tremendous speed. And it can be one of the key factors for success in the photovoltaic business to choose a suitable system, and setting it up right so as to get a maximum efficiency of the site. Therefore, it is regarded to be necessary to research the efficiency of systems to catch maximum photovoltaic energy. In this research, the expected power generation efficiencies are analysed, and compared with each other. This research considered the direct sunlight only, and the angle between the direction of solar panel and sunlight as factors to affect the power generation. Therefore, only rough analyses and estimations are found on 3 systems of fixed system, double-axes tracking system, and horizontal tracking system.

  • PDF

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

Implementation a of data repeating system using solar charging and develop algorithm for data repeating in the pasture (산지초지에서 한우 활동량 정보 수집을 위한 데이터 중계 알고리즘 및 시스템 구현)

  • Kim, Suc-Jun;Kim, Jong-Won;Kim, Chun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.285-293
    • /
    • 2016
  • In the paper, we propose a data transmission repeating system that allows data transmission for the effective supervision of cows grazing in the pasture. It is normal practice to divide the pasture into different areas for the purpose of distributing the grazing. However, this makes it difficult to supply electrical power and transmit data, because some of the pastures are far away from the office used for collecting data. To solve this problem, we developed a repeating system that can allow data transmission in the pasture using a solar charging system that consists of a 60W solar panel, 12V/100A battery and 6A solar controller for the power supply and a data transmission algorithm which extends the range of data transmission when using the proposed repeating system. We verified the performance of the repeating system by checking whether the data transmission is successful or not when transmitting from various test points when there is an obstacle between the receiver and repeating system. We also verified the solar charging system by measuring the battery voltage when the system is operated continuously for 31 days and whether the system can supply sufficient power when the weather is cloudy or rainy for a few days. Finally, we verified the performance of the repeating system and data transmission algorithm by conducting experiments in a pasture.

Comparison of Generation Amount and Operating Time for Fixed-concentrated Type and Single Axis Trace Type of Photovoltaic (고정식 및 단축식 태양광 발전의 발전량과 운전시간의 비교)

  • Song, Hwan-Kee;Lee, Kyung-Sup;Choi, Yong-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.743-747
    • /
    • 2015
  • In this paper, the power generation efficiency of the 4 [kW] fixed-concentrated type photovoltaic power generation system and that of the 4 [kW] single axis trace type photovoltaic power generation system were compared. For that purpose, the two types of photovoltaic power generation systems have been in operation for 1 year on an experimental basis. The amounts of power generated by the two types during the months of January through December and the characteristics of their operating times during the same period have been compared and analyzed. For the study, the type with higher efficiency was selected and the following conclusions have been reached. It was shown that the amount of power generated and the average operation times during the spring months of March through May are higher that those of the summer months of June through August when more sunlight is available. The reason for this phenomenon is thought to be that as the temperatures of the solar panel surface and the surrounding environment go up, the electric current decreases.

A Study on ESS-based hybrid power generation system with easy expansion (증설이 용이한 ESS기반 하이브리드 발전시스템 연구)

  • Kim, Hee-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2019
  • This study is the central axis of the MG (Micro-Grid) configuration and it has the link through the modular hybrid power source and the DC bus, and it provides the function to detect and block the illegal connection by using the standard socket, And to achieve stabilization. Development of power conversion device, smart distribution panel, integrated control system and efficient demand management are required, and compatibility with MG whole system is urgent. This is a hybrid power generation system that is safe with a common power connection protocol and can be easily connected to anyone. This makes it easy to manage data and prepare for expansion of various manufacturers' systems.

Operating Characteristics of 50kW Utility Interactive Photovoltaic System (조선대학교 기숙사전원용 50kW 태양광발전시스템 발전특성)

  • Park, Jeong-Min;Kim, Ji-Hun;Choi, Youn-Ok;Kim, Dae-Gon;Jang, Yong-He
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.720-722
    • /
    • 2005
  • A photovoltaic panel is a device that, through the photovoltaic effect, converts luminous energy into electric energy. Photovoltaic generation system uses infinity of solar energy, cost of fuel is needless and there is no all pollution or waste occurrence. This paper summarizes the results of these efforts by offering a photovoltaic system structure in 50kW large scale applications installed In Chosun University dormitory roof. The status of PV system components, are inter-connection and safety equipment monitoring system will be summarized as this article. This describes configuration of utility interactive photovoltaic system which generated power supply for dormitory In this paper represent 50kw utility PV system examination result

  • PDF

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.

Analysis of Photovoltaic Potential of Unused Space to Utilize Abandoned Stone Quarry (폐채석장 부지 활용을 위한 유휴 공간의 태양광 발전 잠재량 분석)

  • Kim, Hanjin;Ku, Jiyoon;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.534-548
    • /
    • 2021
  • In this paper, the feasibility of generating solar power near an abandoned quarry is examined with the objectives of resolving the essential problems that quarries encounter, such as rockfalls and space usage issues. On an abandoned quarry site in Sadang, Seoul, Republic of Korea, two different PV installation methods were analyzed. The first is attaching PV directly on the quarry slope. Since there are no corresponding safety standards and precedents for installing solar panels directly on slopes, the power generation potential was calculated by using topographic data and reasonable assumptions. The surface area of cut slope section was extracted from the Digital Elevation Model(DEM) via ArcGIS and Python programming to calculate the tilt and power capacity of installable panels. The other approach is installing PV as a rockfall barrier, and the power generation potential was analyzed with the assumption that the panel is installed in the direction of facing solar irradiation. For the derivation of power generation, the renewable energy generation analysis program SAM(System Advisor Model) was used for both methods. According to the result, quarries that have terminated resource extraction and remain devastated have the potential to be transformed into renewable energy generation sites.