DOI QR코드

DOI QR Code

Analysis of Photovoltaic Potential of Unused Space to Utilize Abandoned Stone Quarry

폐채석장 부지 활용을 위한 유휴 공간의 태양광 발전 잠재량 분석

  • Kim, Hanjin (Department of Energy Systems Engineering, Seoul National University) ;
  • Ku, Jiyoon (Department of Energy Systems Engineering, Seoul National University) ;
  • Park, Hyeong-Dong (Department of Energy Systems Engineering, Seoul National University)
  • 김한진 (서울대학교 에너지시스템공학부) ;
  • 구지윤 (서울대학교 에너지시스템공학부) ;
  • 박형동 (서울대학교 에너지시스템공학과)
  • Received : 2021.11.30
  • Accepted : 2021.12.21
  • Published : 2021.12.31

Abstract

In this paper, the feasibility of generating solar power near an abandoned quarry is examined with the objectives of resolving the essential problems that quarries encounter, such as rockfalls and space usage issues. On an abandoned quarry site in Sadang, Seoul, Republic of Korea, two different PV installation methods were analyzed. The first is attaching PV directly on the quarry slope. Since there are no corresponding safety standards and precedents for installing solar panels directly on slopes, the power generation potential was calculated by using topographic data and reasonable assumptions. The surface area of cut slope section was extracted from the Digital Elevation Model(DEM) via ArcGIS and Python programming to calculate the tilt and power capacity of installable panels. The other approach is installing PV as a rockfall barrier, and the power generation potential was analyzed with the assumption that the panel is installed in the direction of facing solar irradiation. For the derivation of power generation, the renewable energy generation analysis program SAM(System Advisor Model) was used for both methods. According to the result, quarries that have terminated resource extraction and remain devastated have the potential to be transformed into renewable energy generation sites.

서울 시내를 비롯한 국내 곳곳에 채굴이 종료된 다수의 폐채석장이 존재한다. 폐채석장은 낙석 등의 안전 문제와 공간 활용도 문제로 인해 항상 개발 대상 구역으로 거론되는데, 폐채석장 인근에 현재 국가적 지원을 받는 태양광 에너지 발전 가능성을 살펴보았다. 본 연구는 사당 IC 인근 폐채석장 부지를 대상으로, 사면에 직접 부착하는 방식과 낙석 방지 시설에 부착하는 방식 등 두 가지 상황에 대해 각각 분석했다. 관련 안전 기준 및 사례가 없어 지형 정보와 적절한 가정을 통해 사면에 직접 설치하는 태양광 패널에 대한 발전 잠재량을 추산했다. ArcGIS로 나타낸 DEM(Digital Elevation Model) 등 지형 고도 정보로부터 실제 폐채석장 절개면 부위의 표면적을 Python 프로그래밍을 통해 연산하여 설치 가능한 패널 용량과 각도를 계산하였다. 또, 낙석 방지 시설에 태양광 조사 방향으로 태양광을 설치하는 상황을 가정하여 가상의 방지벽에서의 발전 잠재량을 분석해보았다. 두 가지 방식의 발전량 도출은 모두 재생에너지 발전량 분석 프로그램 SAM(System Advisor Model)을 통해 진행되었다. 본 연구는 자원 생산이 끝난 폐채석장이 다시 한번 재생에너지 자원 생산지로 활용될 가능성을 보여준다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 해외자원개발협의회의 지원을 받아 수행된 연구임(스마트마이닝 전문 인력 양성).

References

  1. Aginet, 2018.6.22., http://www.agrinet.co.kr/news/articieView.html?idxno=162229
  2. Cho, S., Yim, G.J., Lee, J.Y. and Ji, S., 2021, A Review of the Regeneration Models using a Closed Stone Quarry Area through Domestic and Overseas Cases, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(3), 237-248. https://doi.org/10.32390/ksmer.2021.58.3.237
  3. Choi, Y., Suh, J. and Kim., S.M., 2019, GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: A Review, Applied Science, 9(9), 1960. https://doi.org/10.3390/app9091960
  4. Choi, Y., Choi, Y., Sub, J., Park, H., Jang, M. and Go, W.R., 2013, Assessment of Photo voltaic Potentials at Buguk, Sungsan and Younggwang Abandoned Mines in Jeollanam-do, Korea. Journal of the Korean Society of Mineral and Energy Resources Engineers, 50, 827-837. https://doi.org/10.12972/ksmer.2013.50.6.827
  5. Chosun Biz, 2017.2.16, https://biz.chosun.com/site/data/html_dir/2017/02/15/2017021502799.html
  6. Department of Climate and Environment in Seoul, 2016, Urban Noise Management Manual, Seoul, Korea, 11.
  7. Gastli, A. and Charabi, Y., 2010, Siting of large PV farms in AI-Batinah region Oman, 2010 IEEE International Energy Conference, 548-552.
  8. Hofierka, J. and Suri, M., 2002, The Solar Radiation Model for Open source GIS: Implementation and applications, Proceedings of the Open source GIS-GRASS users conference 2002, 51-70.
  9. Jenness, J., 2004, Calculating Landscape Surface Area from Digital Elevation Models, Wildlife Society Bulletin, 32(3), 829-839. https://doi.org/10.2193/0091-7648(2004)032[0829:CLSAFD]2.0.CO;2
  10. Kim, J.C. and Kim, K.N., 2018, Study on the Regional Differences of Optimal Orientation and Tilt Angle for Photovoltaic Systems: Simulations by a System Advisor Model, New & Renewable Energy, 14(2),9-20. https://doi.org/10.7849/ksnre.2018.6.14.2.009
  11. Korea Forest Service, 2021. Mountain Management Act, KSF notice 2021-21, Daejeon, Korea, 65-66.
  12. Ku, J. and Park, H.D., 2021, Effect of Shading on Solar PV Generation on Campus Rooftops, 2021 KSES Annual Spring Conference, 96.
  13. Korea Energy Agency, 2020. Announcement of Carbon Neutral Strategy, Energy Issue Briefing 152, UIsan, Korea, 1-3.
  14. Kundu, Sandeep N., Pradhan, B., 2009, Surface area processing in GIS, Geospatial World, https://www.geospatialworld.net/article/surface-area-processing-in-gis/
  15. Malta Business Weekly, 2020. 11. 9., https://maitabusinessweekly.com/pa-opens-consultation-period-for-sea-report-on-solar-farm-development-in-disused-quarries/10943/
  16. Ministry of Land, Infrastructure and Transport, 2003, Rockfall Prevention Facilities, Road Safety Facility Installation and Management Guidelines, Goyang, Korea, 446-486.
  17. Ministry of Trade, Industry and Energy, 2017, Renewable Energy 3020 Implementation Plan, Sejong, Korea, 1-6.
  18. Munhwa Ilbo, 2015.8.6, http://www.muuhwa.com/news/view.html?no=2015080601071527107001
  19. Oh, M., Kim, S.M., Koo, Y. and Park, H., 2018, Analysis of Photovoltaic Potential and Selection of Optimal Site near Gumdeok Mine, North Korea, New & Renewable Energy, 14(3),44-53. https://doi.org/10.7849/ksnre.2018.9.14.3.044
  20. Park, J.H., Lee, J.W. and Park, C.M., 2010, Analysis of the Case of the Rehabilitation Quarrying After Using Quarrying Site, Journal of the Korean Society of Environmental Restoration Technology, 13(3), 152-162.
  21. Photon, 2021.3.3., https://urbasolar.com/references/former-clay-quarry/
  22. Renewable Energy Cloud Platform, https://recloud.energy.or.kr/present/sub3_1_3.do (accessed 2021.11.7.)
  23. RBASDLAR, Ground-mounted Power Plants, https://urbasolar.com/ground-mounted-power-plants/ (accessed 2021.10.8.)
  24. Sanchez-Loranzo, J.M., Teruel-Solano, J., Soto-Elvira, P.L. and Garcia, 2013, Geopraphical Information Systems (GIS) and Multo-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain, Renewable and Sustainable Energy Reviews, 24, 544-556. https://doi.org/10.1016/j.rser.2013.03.019
  25. Sedaily, 2020.9.13., https://www.sedaily.com/NewsView/IZ7U98X8SE
  26. Talento, K., Amado, M. and Kullberg, J.C., 2020, Quarries: From Abandoned to Renewed Places, Land, 9(5), 136. https://doi.org/10.3390/land9050136
  27. The Agility Effect, 2021. 7. 8, https://www.theagilityeffect.com/en/article/former-quarry-sites-secure-their-place-in-the-sun/
  28. Yang, A., Kim, H. and Park, H.D., 2020, Assessment of Photo voltaic Potential of Open-pit Liroestone Mine near Donghae City, 2020 KSES Annual Autumn Conference, 193.
  29. Yang, H.S., Park, H.S. and Yoon, H.K., 2013, A Comparative Analysis on the Generation Efficiencies of the Photovoltaic Systems and Building Integrated Photovoltaic Systems, Journal of the Architectural Institute of Korea Planning & Design, 29(11), 37-44. https://doi.org/10.5659/JAIK_PD.2013.29.11.37