• 제목/요약/키워드: Solar Oxidation

검색결과 143건 처리시간 0.023초

Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유 (TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution)

  • 신동근;진은주;이윤주;권우택;김영희;김수룡;류도형
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.276-281
    • /
    • 2015
  • $TiO_2-SiO_2$ 나노복합소재는 자체가 화학적으로 안정할 뿐만 아니라 광학적, 열적 특성이 매우 우수하여 광화학센서, 촉매 등 다양한 분야에 적용되고 있다. 이러한 구조를 구현하는 방법으로 티타늄이 첨가된 폴리카보실란(PCS) 혼합용액을 전기방사한 후 이를 적절한 산화분위기에서 열처리하여 부직포상의 $TiO_2-SiO_2$ 나노복합섬유를 만들 수 있는데, 이는 기존의 졸겔공정에 의해 제조되는 섬유보다 더 쉽고 안정적인 방법이다. 공정 중 방사된 섬유를 산화분위기에서 $1200^{\circ}C$ 이상까지 열처리하게 되면 크리스토발라이트 기지조직 내에서 아나타제 나노결정상이 매우 균일하게 형성되었다. 또한, 열처리 후 섬유의 표면과 단면은 매우 치밀하고 매끈하였으며 10~20nm 크기의 아나타제 결정입자들이 내부에 균일하게 분포하였다.

Ti-Ga 합금 위에 형성된 산화티타늄 피막의 광 전기분해 특성에 관한 연구 (Photoelectrochemical Behaviour of Oxide Films on Ti-Ga2O3 Alloy)

  • 박성용;조병원;윤경석;이응조
    • 한국수소및신에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 1992
  • With the aim to obtain $TiO_2$ films with an increased photorespones and absorbance in the visible region of the solar spectrum, the direct oxidation of titanium alloys were performed. In this study, $Ti-Ga_2O_3$ alloy was prepared by mixing, pressing and arc melting of appropriate amounts of titanium and $Ga_2O_3$ powder. Electrochemical measurements were performed in three electrode cell using electrolyte of 1M NaOH solution. The oxide films on $Ti-Ga_2O_3$ alloy was composed of $Ti_2O$, TiO, $TiO_2$, $Ga_2TiO_5$. The free energy efficiency (${\eta}e$) of $Ti-Ga_2O_3$ oxide films had 0.8~1.3 % and were increased with the increase of $Ga_2O_3$ content up to 10wt %. The onset potential ($V_{on}$) had -0.8V~0.9V ranges and were shifted to anodic direction with the increase of $Ga_2O_3$ content. The spectral response of Ti-$Ga_2O_3$ oxides were similar to the response of the $TiO_2$ and their $E_g$ were observed to 2.90~3.0eV. Variations of onset potential($V_{on}$) associated with electrolyte pH were -59mV/pH. This probably reflects the nature of the bonding of $OH^-$ ion to the $TiO_2$ surface, a common phenomena in the transition-metal oxides.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang;Jun-Seok Ha
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.388-396
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.

염료감응형 광전기화학 물분해 전지용 Tri-branched tri-anchoring organic dye 개발 (Tri-branched tri-anchoring organic dye for Visible light-responsive dye-sensitized photoelectrochemical water-splitting cells)

  • 박정현;김재홍;안광순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.87-87
    • /
    • 2010
  • Photoelectrochemical (PEC) systems are promising methods of producing H2 gas using solar energy in an aqueous solution. The photoelectrochemical properties of numerous metal oxides have been studied. Among them, the PEC systems based on TiO2 have been extensively studied. However, the drawback of a PEC system with TiO2 is that only ultraviolet (UV) light can be absorbed because of its large band gap (3.2 - 3.4 eV). Two approaches have been introduced in order to use PEC cells in the visible light region. The first method includes doping impurities, such as nitrogen, into TiO2, and this technique has been extensively studied in an attempt to narrow the band gap. In comparison, research on the second method, which includes visible light water splitting in molecular photosystems, has been slow. Mallouk et al. recently developed electrochemical water-splitting cells using the Ru(II) complex as the visible light photosensitizer. the dye-sensitized PEC cell consisted of a dye-sensitized TiO2 layer, a Pt counter electrode, and an aqueous solution between them. Under a visible light (< 3 eV) illumination, only the dye molecule absorbed the light and became excited because TiO2 had the wide band gap. The light absorption of the dye was followed by the transfer of an electron from the excited state (S*) of the dye to the conduction band (CB) of TiO2 and its subsequent transfer to the transparent conducting oxide (TCO). The electrons moved through the wire to the Pt, where the water reduction (or H2 evolution) occurred. The oxidized dye molecules caused the water oxidation because their HOMO level was below the H2O/O2 level. Organic dyes have been developed as metal-free alternatives to the Ru(II) complexes because of their tunable optical and electronic properties and low-cost manufacturing. Recently, organic dye molecules containing multi-branched, multi-anchoring groups have received a great deal of interest. In this work, tri-branched tri-anchoring organic dyes (Dye 2) were designed and applied to visible light water-splitting cells based on dye-sensitized TiO2 electrodes. Dye 2 had a molecular structure containing one donor (D) and three acceptor (A) groups, and each ended with an anchoring functionality. In comparison, mono-anchoring dyes (Dye 1) were also synthesized. The PEC response of the Dye 2-sensitized TiO2 film was much better than the Dye 1-sensitized or unsensitized TiO2 films.

  • PDF

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Taherpour, Avat Arman;Biuki, Farzaneh
    • Journal of Information Display
    • /
    • 제12권3호
    • /
    • pp.145-152
    • /
    • 2011
  • Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

Tofua Arc의 열수구환경으로부터 호열성 혐기성 고세균(Thermococcus)의 농화배양 및 동정 (Identification of Anaerobic Thermophilic Thermococcus Dominant in Enrichment Cultures from a Hydrothermal Vent Sediment of Tofua Arc)

  • 차인태;김소정;김종걸;박수제;정만영;주세종;권개경;이성근
    • 미생물학회지
    • /
    • 제48권1호
    • /
    • pp.42-47
    • /
    • 2012
  • 열수구(Hydrothermal vent)는 빛이 없는 환경에서 생명체의 진화가 일어나는 독특한 환경을 유지하고 있다. 남태평양 Tonga의 Tofua arc의 열수구로부터 퇴적물을 채취하여 산화철[iron(III)], 황(elemental sulfur, $S^0$) 그리고 질산염을 전자수용체로 사용하고, 수소($H_2$), yeast extract를 전자공여체로 사용하여 배양에 의한 미생물의 다양성을 연구하였다. 배양 온도는 각각 $65^{\circ}C$$80^{\circ}C$였으며, 연속희석배양법과 16S rRNA 유전자의 PCR-Denaturing Gradient Gel Electrophoresis를 분석하고, 검출된 염기서열의 정보분석을 통하여 고세균을 동정하였다. 16S rRNA 유전자의 계통분류학적 분석 결과 배양된 대부분의 고세균은 Thermococcus 속(T. alcaliphilius, T. litoralis, T. celer, T. barossii, T. thoreducens, T. coalescens)에 속하며 그들과 98-99%의 상동성을 가지고 있었다. Thermococcus 속의 미생물들이 일반적으로 이용할 수 없는 질산염과 산화철을 전자수용체로 첨가한 배양에서 관찰되었으나, 이는 환원제로 첨가한 $Na_2S$의 산화물을 이용하여 성장한 것으로 추정된다. Thermococcus 속에 속하는 고세균 외의 다양한 고세균의 배양을 위해서는 $Na_2S$ 대신 다른 환원제를 사용하는 배양조건의 이용이 요구된다.

수소생산 기술동향 (Technical Trends of Hydrogen Production)

  • 이신근;한재윤;김창현;임한권;정호영
    • 청정기술
    • /
    • 제23권2호
    • /
    • pp.121-132
    • /
    • 2017
  • 온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응 및 가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.

리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화 (Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation)

  • 박이슬
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.884-889
    • /
    • 2018
  • 본 연구에서는 리튬이온커패시터의 음극으로 polyaniline $(PANI)/WO_3$ 전극을 제조하고, 이의 전기화학적 특성을 측정, 분석하였다. $WO_3$ 전극 표면에 PANI를 전기화학적으로 담지 하였을 때 PANI의 용량이 더해져 $WO_3$ 전극보다 충, 방전 용량이 향상되었다. 한편, 충, 방전 시 태양광을 조사하여 충, 방전 용량과 쿨롱 효율(coulombic efficiency)에 빛 조사가 미치는 영향을 파악하였다. $WO_3$ 전극과 $PANI/WO_3$ 전극에 태양광을 조사하였을 때, 두 전극의 충, 방전 용량과 쿨롱 효율은 태양광을 조사하지 않았을 때보다 증가하였다. 이는 $WO_3$가 빛 조사에 의해 광전자를 생성하여 전극의 전기화학적 특성에 영향을 주기 때문으로 해석되며, $PANI/WO_3$의 경우 PANI 또한 빛에 의해 여기 될 수 있어 전극의 특성이 변하게 된다. 빛 조사에 의해 추가로 생성된 광전자가 $Li^+$ 이온의 삽입(intercalation)에 사용되어 용량을 증가시킬 수 있을 뿐 아니라, 전극의 전도성을 높여 쿨롱 효율을 향상 시키는 것으로 여겨진다. $PANI/WO_3$는 충, 방전을 반복하여 진행하게 되면 PANI의 불안정성으로 인해 용량이 점차 감소되게 되지만, 빛 조사 시에는 생성된 광전자와 정공으로 인한 산화-환원 반응에 의해 PANI의 안정성이 크게 향상되어 충, 방전 용량의 감소없이 안정적으로 유지되었다.