Browse > Article
http://dx.doi.org/10.7845/kjm.2012.48.1.042

Identification of Anaerobic Thermophilic Thermococcus Dominant in Enrichment Cultures from a Hydrothermal Vent Sediment of Tofua Arc  

Cha, In-Tae (Department of Microbiology, Chungbuk National University)
Kim, So-Jeong (Department of Microbiology, Chungbuk National University)
Kim, Jong-Geol (Department of Microbiology, Chungbuk National University)
Park, Soo-Je (Department of Microbiology, Chungbuk National University)
Jung, Man-Young (Department of Microbiology, Chungbuk National University)
Ju, Se-Jong (Marine Biotechnology Research Center, KORDI)
Kwon, Kae-Kyoung (Deep-sea and Marine Georesources Research Department, KORDI)
Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.48, no.1, 2012 , pp. 42-47 More about this Journal
Abstract
Hydrothermal vents (HTV) provide special environments for evolution of lives independent on solar energy. HTV samples were gained from Tofua arc trench in Tonga, South Pacific. We investigated archaeal diversity enriched using combinations of various electron donors (yeast extract and $H_2$) and electron acceptors [Iron (III), elemental sulfur ($S^0$) and nitrate. PCR amplification was performed to detect archaeal 16S rRNA genes after the cultures were incubated $65^{\circ}C$ and $80^{\circ}C$ for 2 weeks. The cultures showing archaeal growth were transferred using the dilution-to-extinction method. 16S rRNA gene PCR-Denaturing Gradient Gel Electrophoresis was used to identify the enriched archaea in the highest dilutions where archaeal growth was observed. Most of cultured archaea belonged to genus of Thermococcus (T. alcaliphilius, T. litoralis, T. celer, T. barossii, T. thoreducens, T. coalescens) with 98-99% 16S rRNA gene similarities. Interestingly, archaeal growth was observed in the cultures with Iron (III) and nitrate as an electron acceptor. It was supposed that archaea might use the elemental sulfur generated from oxidation of the reducing agent, sulfide. To cultivate diverse archaea excluding Thermococcus, it would be required to use other reducing agents instead of sulfide.
Keywords
Thermococcus; anaerobic archaea; enrichment culture; extinction dilution culture; hydrothermal vent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arab, H., Volker, H., and Thomm, M. 2000. Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int. J. Syst. Evol. Microbiol. 50, 2101-2108.   DOI   ScienceOn
2 Dirmeier, R., Keller, M., Hafenbradl, D., Braun, F.J., Rachel, R., Burggraf, S., and Stetter, K.O. 1998. Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkaliphilic archaeon growing on amino acids. Extremophiles 2, 109-114.   DOI   ScienceOn
3 Duffaud, G.D., d'Hennezel, O.B., Peek, A.S., Reysenbach, A.-L., and Kelly, R.M. 1998. Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst. Appl. Microbiol. 21, 40-49.   DOI   ScienceOn
4 Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791.   DOI   ScienceOn
5 Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool 20, 406-416.   DOI   ScienceOn
6 Godfroy, A., Lesongeur, F., Raguenes, G., Querellou, J., Antoine, E., Meunier, J.-R., Guezennec, J., and Barbier, G. 1997. Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 47, 622-626.   DOI   ScienceOn
7 Gonzalez, J.M., Kato, C., and Horikoshi, K. 1995. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch. Microbiol. 164, 159-164.   DOI
8 Hall, T.A. 1999. bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
9 Hoki, T., Nishijima, M., Miyashita, H., and Maruyama, T. 1995. Dense community of hyperthermophilic sulfur-dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara Jima Island, Kagoshima, Japan. Appl. Environ. Microbiol. 61, 1931-1937.
10 Huber, H., Burggraf, S., Mayer, T., Wyschkony, I., Rachel, R., and Stetter, K.O. 2000. Ignococcus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int. J. Syst. Evol. Microbiol. 50, 2093-2100.   DOI   ScienceOn
11 Huber, R. and Stetter, K.O. 1992. The order Termophoteales, pp. 677-683. In Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds) The prokaryotes. Springer Berlin Meidelberg New York, N.Y., USA.
12 Keller, M., Braun, F.J., Dirmeier, R., Hafenbradl, D., Burggraf, S., Rachel, R., and Stetter, K.O. 1995. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch. Microbiol. 164, 390-395.   DOI   ScienceOn
13 Kevbrin, V.V. and Zavarzin, G.A. 1992. The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology [English Translation of Mikrobiologiya] 61, 563-571.
14 Kimura, M. 1983. The neutral theory of molecular evolution Cambridge: Cambridge University, USA.
15 Stetter, K.O. 1992. Life at the upper temperature border, pp. 195-219. In Tran, T.V.J., Tran, T.V.K., Moundolou, J.C., Schneider, J., and McKay, C. (eds.) Frontiers of life. Editions Frontiers, Gif-sur-Yvette.
16 Kobayashi, T., Kwak, Y.S., Akiba, T., Kudo, T., and Horikoshi, K. 1994. Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst. Appl. Microbiol. 17, 232-236.   DOI   ScienceOn
17 Kuwabara, T., Minaba, M., Iwayama, Y., Inouye, I., Nakashima, M., Marumo, K., Maruyama, A., Sugai, A., Itoh, T., Ishibashi, J., and et al. 2005. Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int. J. Syst. Evol. Microbiol. 55, 2507-2514.   DOI   ScienceOn
18 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
19 Stetter, K.O. 1996. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18, 149-158.   DOI   ScienceOn
20 Takai, K. and Nakamura, K. 2011. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr. Opin. Microbiol. 14, 1-10.   DOI   ScienceOn
21 Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular evolution genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.   DOI   ScienceOn
22 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.   DOI   ScienceOn
23 Wolin, E.A., Wolin, M.J., and Wolfe, R.S. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882-2888.
24 Zillig, W., Holz, I., Janekovic, D., Schafer, W., and Reiter, W.D. 1983. The Archebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4, 88-94.   DOI
25 Zillig, W., Holz, I., Janekovic, D., Kelenk, H.P., Jmsel, E., Trent, J., Wunderl, S., Fortjatz, V.H., Coutinho, R., and Ferreira, T. 1990. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172, 3959-3965.   DOI