• 제목/요약/키워드: Solar Irradiation

검색결과 297건 처리시간 0.025초

파장별 BRDF 데이터를 이용한 평판의 적외선 복사휘도 특성 분석 (Infrared Signature Analysis on a Flat Plate by Using the Spectral BRDF Data)

  • 최준혁;김동건;김정호;김태국
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.577-585
    • /
    • 2010
  • 본 논문은 태양복사에너지를 고려한 지상 물체에서 방출되는 적외선 복사휘도를 예측하는 소프트웨어 개발 중 BRDF 데이터를 고려한 적외선 복사휘도를 분석한 내용을 다루었다. 물체 표면에서 방출되는 적외선 복사휘도는 물체의 표면온도 및 광학적 표면 특성을 이용하여 계산할 수 있다. BRDF는 물체 표면에 입사되는 에너지와 반사되는 에너지의 관계로 나타낼 수 있는 백분율로 정의하며 적외선 복사휘도를 분석하는 데 매우 중요한 자료로 사용된다. 본 논문에서는 중적외선 및 원적외선 영역에 대하여 태양이 존재하는 시간동안 다양한 재질의 광학적 표면 특성에 따른 적외선 영상을 생성하여 분석하였다. 연구결과 물체 표면의 복사율 및 BRDF 등은 물체의 적외선 영상에 매우 중요한 영향을 미치는 것을 확인하였으며, 특히 태양의 영향을 받을 경우 MWIR 영역의 복사휘도는 수치적으로 최대 10배까지 신호량의 차이를 보일 수 있음을 확인하였다.

The First High Solar Concentrator System Performance Test in Korea

  • Chung, Kyung-Yul;Kang, Sung-Won;Kim, Yong-Sik;Sim, Chang-Ho;Jeong, Nam-Young;Park, Chang-Dae;Ryu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.876-884
    • /
    • 2012
  • The worldwide CPV(Concentrated Photo Voltaic) market has been increased rapidly due to the increase in large-scale PV(Photo Voltaic) plants which are situated in sun-rich areas with either a Mediterranean or equatorial-type climate. CPV systems are arguably some of the most important devices in the production of electricity within regions with a sun-rich climate, particularly those which benefit from abundant direct solar irradiation. We have developed a 500X CPV module with rated power of 170Wp. The CPV module must satisfy the constraint of having a sensitive tracking accuracy due to the limited tolerance of the acceptance angle in intrinsic optical design. In this study, the module's acceptance angle used was designed with a tolerance angle of ${\pm}1^{\circ}$ in the secondary optics design. In general, non-concentrated module type 2-axis trackers have a tolerance angle larger than ${\pm}1^{\circ}$ due to standard silicon-type modules which are insensitive to the tracking accuracy of the sun. They have a tolerance angle of ${\pm}2{\sim}4^{\circ}$, which fails to exert a significant influence on the performance of the module. This paper provides a study of an experimental variation of the efficiency of the CPV module in terms of its tracking accuracy. Also, the performance of the module is studied from the perspective of temperature and direct irradiation.

An Approach to Increase Vitamin $D_2$ Level in Doenjang (Fermented Soybean Paste) using Mushrooms

  • Choi, Han-Seok;Kim, Mi-Kyum;Kim, Myung-Kon;Park, Hyo-Suk;Song, Geun-Sub;Lee, Keun-Kwang;Kim, Tae-Young;Kim, Jong-Goon
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.828-831
    • /
    • 2005
  • The content of vitamin $D_2$, including its precursor ergosterol, was determined in some cultivated mushrooms to manufacture fortified Doenjang (Korean traditional soybean paste) with vitamin D by supplementation with mushroom. Ergosterol was the most abundant sterol in the mushrooms (50 to 140 mg/100 g dry weight) but the ergocalciferol portion made up only 0.065% (Pleurotus eryngii) to 2.5% (stipe part of Lentinus edodes, shiitake) of the total vitamin $D_2$ of each mushroom. Changes in these compounds in L. edodes caused by UV or solar irradiation were also evaluated. Ergocalciferol content in the pileus part of L. edodes went up to $424\;{\mu}g/100\;g$ dry weight and ergosterol levels reached 139.3 mg per 100 g dry weight at maximum levels. Ergocalciferol content increased about 50% when exposed to solar radiation and increased 377% with UV irradiation. These compounds level in Doenjang was enriched as much as supplied UV irradiated L. edodes powder to before fermentation, and the supplemented mushroom did not influence the palatability of Doenjang.

일사영향권내 비균질 토양의 열적거동 예측 모델 (Model to Predict Non-Homogeneous Soil Temperature Variation Influenced by Solar Irradiation)

  • 김용환;현명택;강은철;박용정;이의준
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.1-7
    • /
    • 2006
  • This study is to develop a model to predict the soil temperature variation in Korea Institute of Energy Research using its thermal properties, such as thermal conductivity and diffusivity. Soil depth temperature variation is very important in the design of a proper Ground Source Heat Pump (GSHP) system. This is because the size of the borehole depends on the soil temperature distribution, and this can decrease GSHP system cost. If the thermal diffusivity and thermal conductivity are known, the soil temperature can be predicted by either the Krarti equation or the Spitler equation. Then a comparison with the Krarti equation and Spitler equation data with the real measured data can be performed. Also, the thermal properties can be reasonably approximated by performing a fit of the Krarti and Spitler equations with measured temperature data. This was done and, as a result, the Krarti equation and Spitler equation predicted values very close to the measured data. Although there is about a $0.5^{\circ}C$ difference between the deep subsurface prediction (16m - 60m), with this equation, were expected to have model this Non-Homogeneous Soil Temperature phenomenon properly. So, it has been shown that a prediction of non-homogeneous soil temperature variation influenced by solar radiation can be achieved with a model.

측면입사광에 대한 SiOx 무반사 회절격자 결합 c-Si PV 서브-모듈의 광전변환효율 향상 (Improvement of Solar Conversion Efficiency in a c-Si PV Sub-Module Integrated with SiOx Anti-Reflection Grating for Oblique Optical Irradiation)

  • 심지현;김제하
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.325-330
    • /
    • 2017
  • We fabricated 1-D and 2-D diffraction gratings of SiOx anti-reflection (AR) film grown on a quartz substrate and integrated them into a c-Si photovoltaic (PV) submodule. The light-trapping effect of the resulting submodules was studied in terms of the oblique optical incident angle, ${\theta}_i$. As the ${\theta}_i$ increased, solar conversion efficiency, ${\eta}$, was improved as expected by the increased optical transmission caused by the grating. For ${\theta}_i{\leq}30^{\circ}$, the relative solar conversion efficiency, ${\Delta}{\eta}$, of a 1-D SiOx (t=300 nm) grating, compared to that of a flat SiOx AR-coated integrated PV submodule, was improved very little, with a small variation of within 2%, but increased markedly for ${\theta}_i{\geq}40^{\circ}$. We observed a change of ${\Delta}{\eta}$ as large as 10.7% and 9.5% for the SiOx grating of period t=800 nm and 1200 nm, respectively. For a 2-D SiOx (t=300 nm) grating integrated PV submodule, however, the optical trapping behavior was similar in terms of ${\theta}_i$ but its variation was small, within ${\pm}1.0%$.

V2O5 및 TeO2 함유 유리를 이용한 염료감응형 태양전지 패널의 레이저 봉착 (Laser Sealing of Dye-Sensitized Solar Cell Panels Using V2O5 and TeO2 Contained Glass)

  • 조성진;이경호
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.170-176
    • /
    • 2014
  • Effective glass frit compositions enabled to absorb laser energy, and to seal a commercial dye-sensitized solar-cell-panel substrate were developed by using $V_2O_5$-based glasses with various amounts of $TeO_2$ substitution. The latter was intended to increase the lifetime of the solar cells. Substitution of $V_2O_5$ by $TeO_2$ provided a strong network structure for the glasses via the formation of tetrahedral pyramids in the glass, and changed the various glass properties, such as glass transition temperature ($T_g$), dilatometric softening point ($T_d$), crystallization temperature, coefficient of thermal expansion (CTE), and glass flowage without any detrimental effect on the laser absorption property of the glasses. The thermal expansion mismatch (${\Delta}{\alpha}$) between the glass frit and the substrate could be controlled within less than ${\pm}5%$ by addition of 10 wt% of ${\beta}$-eucryptite. An 810 nm diode laser was used for the sealing test. The laser sealing test revealed that the VZBT20 glass frit with 10 wt% ${\beta}$-eucryptite was successfully sealed the substrates without interfacial cracks and pores. The optimum sealing conditions were provided by a beam size of 3 mm, laser power of 40 watt, scan speed of 300 mm/s, and 200 irradiation cycles.

12kW급 건물일체형 태양광발전시스템 사례분석 (Case Study on 12kW Building Integrated Photovoltaic System)

  • 박경은;강기환;김현일;소정훈;유권종;김준태;이길송
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass

  • Cho, Sung-Jin;Lee, Kyoungho
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.103-107
    • /
    • 2015
  • The effective glass frit composition used to absorb laser energy and to seal commercial dye-sensitized solar cell panel substrates has been previously developed using $V_2O_5-TeO_2$-based glass with 10 wt% ${\beta}$-eucryptite as a CTE controlling filler. The optimum sealing conditions are provided using a 3 mm beam, a laser power of 40 watt, a scan speed of 300 mm/s, and 200 irradiation cycles. In this study, the feasibility of the developed glass frit is investigated in terms of the sealing strength and chemical durability against the commercial iodide/triiodide electrolyte solution and fluorine-doped tin oxide (FTO) electrode in order to increase the solar cell lifetime. The sealing strength of the laser-sealed $V_2O_5-TeO_2$-based glass frit is $20.5{\pm}1.7MPa$, which is higher than those of thermally sealed glass frit and other reported glass frit. Furthermore, the developed glass frit is chemically stable against electrolyte solutions. The glass frit constituents are not leached out from the glass after soaking in the electrolyte solution for up to three months. During the laser sealing, the glass frit does not react with the FTO electrode; thus, the resistivity of the FTO electrode beneath the laser-sealed area remains the same.

(p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막의 광도전 특성에 관한 연구 (A Study on the Photo-Conductive Characteristics of (p)ZnTe/(n)Si Solar Cell and (n)CdS-(p)ZnTe/(n)Si Poly-Junction Thin Film)

  • 전춘생;김완태;허창수
    • 태양에너지
    • /
    • 제11권3호
    • /
    • pp.74-83
    • /
    • 1991
  • 본 논문은 substrate의 온도를 $200{\pm}1^{\circ}C$ 정도로 유지하며 진공저항 가열 증착법을 이용하여 (p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막을 제작한 후 그 전기적 특성을 조사, 비교하였다. 제작한 (p)ZnTe/(n)Si 태양전지와(n)CdS-(p)ZnTe/(n)Si 복접합 박막에 대하여 $100[mW/cm^2]$의 광조사 하에서 특성을 조사한바 다음과 같은 결과를 얻었다. 단략전류$[mA/cm^2]$ (p)ZnTe/(n)Si:28 (n)CdS-(p)ZnTe/(n)Si:6.5 개방전압[mV] (p)ZnTe/(n)Si:450 (n)CdS-(p)ZnTe/(n)Si:250 충실도, FF (p)ZnTe/(n)Si:0.65 (n)CdS-(p)ZnTe/(n)Si:0.27 변환효율[%] (p)ZnTe/(n)Si:8.19 (n)CdS-(p)ZnTe/(n)Si:2.3 제작된 박막은 열처리에 의해 성능이 향상되지만 (p)ZnTe/(n)Si 태양전지는 약 $470^{\circ}C$ 이상의 온도와 15분 이상의 열처리 시간에서 그리고 (n)CdS-(p)ZnTe/(n)Si 복접합 박막은 약 $580^{\circ}C$ 이상의 온도와 15분 이상의 열처리 시간에서는 박막의 각종 구조결함으로 인한 감소현상을 나타내었다. 열처리 온도의 증가에 따라 박막의 표면저항은 감소하였다.

  • PDF

비정질 탄소박막의 광발열 특성 연구 (Photothermal characteristics of amorphous carbon thin films)

  • 오현곤;조경아;김상식
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.213-215
    • /
    • 2018
  • 본 연구에서는 실리콘 기판 위에 DC 스퍼터링 방법을 이용하여 비정질 탄소박막을 제작하고, 흡광특성과 광발열 특성을 조사하였다. 비정질 탄소박막은 1000 nm 파장에서 97%의 흡광도를 보였으며, 백색광이 조사됨에 따라 비정질 탄소박막의 온도는 $21.1^{\circ}C$에서 $24.1^{\circ}C$로 상승하여 약 $3^{\circ}C$의 온도가 증가하였다. 또한, 백색광이 50초 동안 조사되는 동안 비정질 탄소박막에서는 기판에 비해 4배 빠른 온도상승속도로 온도가 증가하였다.