• Title/Summary/Keyword: Solar Heat storage

Search Result 289, Processing Time 0.028 seconds

An Experimental and Field Study on Thermal Performance of Thermosyphon Solar Hot Water System (자연대류형 태양열 온수 급탕 시스템의 열성능 및 실증실험)

  • Kang, Y.H.;Kwak, H.Y.;Jeon, H.S.
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.16-26
    • /
    • 1991
  • This paper studies development of a solar thermosyphon hot water system which is suitable to korean climate and life style, to save energy consumed for domestic water heating. The system consists of two flat plate collectors(or three flat plate collectors) connected in parallel and a storage tank of 300 liter capacity with heat exchanger and the optimum system was designed through the comparative measurements of five different storage tanks. The developed system manufactured with domestic materials were installed in residential buildings in seven cities(Seoul, Pusan, Taegu, Kwangju, Taejeon, Kangneung, Cheju) for demonstration and field test and results show possibility for commercialization.

  • PDF

Thermal Performance of the Storage Brick Containing Microencapsulated PCM (상변화형 미세캡슐을 함유한 축열블럭의 열성능 특성)

  • Lee, D.G.;Chun, W.G.;Kang, Y.H.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 1999
  • The thermal performance of storage brick, containing microencapsulated PCM(phase change material), was investigated for utilization as a floor heating system. Sodium acetate trihydrate($CH_3COONa{\cdot}3H_2O$) was selected for the PCM and was encapsulated. The thermal storage brick was manufactured with mixing cement mortar having 10%, 20% PCM contents, respectively. Four different flow rates and three different cooling temperatures was used in this work for analyzing the heat charging and discharging characteristics of the thermal storage brick. The result showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM.

  • PDF

Analysis of Air Flow for Improving the Heat Storage Efficiency of the Solar-heated Greenhouse with Rock Bed Storage (자갈축열온실의 축열성능 향상을 위한 공기유동 분석)

  • 이석건;이종원;이현우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.195-198
    • /
    • 2003
  • 자갈축열 태양열온실은 주간에 일사로 데워진 온실 내부공기를 온실하부에 설치된 자갈축열층사이로 강제순환시켜 자갈에 에너지를 축열한다. 이러한 축열과 방열과정을 통하여 겨울철 야간에 난방시스템으로 이용하고, 여름철에는 냉방효과를 꾀하게 된다. 온실내 공기가 축열층을 통과하는 동안의 열전달은 강제대류열전달이며, 이 경우 축열층내의 열이동은 축열층내 공기와 자갈표면온도가 초기에는 열적으로 평형상태로 존재하다가 순환공기의 온도상승에 따라 열전달이 일어나게 된다. (중략)

  • PDF

Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System (열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구)

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.45-52
    • /
    • 1993
  • The benefits of thermal stratification in sensible heat storage were investigated for residential solar applications. The effect of increased thermal useful efficiency of hot water stored in an actual storage tank due to stratification has been discussed and illustrated through experimental data and computer simulation, which were taken by changing dynamic and geometric parameters. When the flow rate was 8 liter/min and ${\Delta}T=40^{\circ}C$ was $40^{\circ}C$, the useful efficiency(${\eta}_u$) was about 90% in case of using a distributor, but not using a distributor the useful efficiency(${\eta}_u$) was about 82%. So these kinds of distributor would be recommendable for a hot water storage system and residential solar energy application to increase useful efficiency(${\eta}_u$). In the case of the uniform circular distributor, when the flow rate was 8 liter/min partial mixing was decreased and a stable stratification was obtained. Furthermore, if the distrbutor was manufactured so that the flow is to be the same from all perforations in order to enhance stratification, it might be predicted that further stable stratification and higher useful efficiency(${\eta}_u$) are obtainable.

  • PDF

Long-term thermal performance of evacuated tubular solar collector for demonstration system (태양열 실증시스템의 진공관형 태양열 집열기 장기 열성능)

  • Lee, Ho;Joo, Hong-Jin;Yoon, Eung-Sang;Kim, Sang-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.104-110
    • /
    • 2008
  • This paper presents demonstration study results derived through field testing of a part load solar energized cooling system for the library of a cultural center building located in Gwangju, Korea. First operating demonstration system was set up in Gwangju in 2005. These system comprises the $200m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank. In a 2006, daily average of insolation showed about $506W/m^2$, the solar collector efficiency was 44%. In a 2007, daily average of insolation showed about$507W/m^2$, the solar collector efficiency was 42%. As a result, evacuated tubular solar collector kept the high efficiency for two years.

  • PDF

Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(II) - The Case of Constant Temperature Heating Fluid (열싸이폰을 이용한 잠열축열시스템의 성능실험(II) - 일정한 온도의 가열유체를 사용한 경우 -)

  • Kim, Tae-Il;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.37-46
    • /
    • 1992
  • An experimental study was carried out to investigate the performance of a latent heat storage system using paraffin wax as the phase change material. A thermosyphon was employed to transfer heat from the hot ethylene glycol flowing across the evaporator section of the thermosyphon into the wax. In order to increase the effective thermal conductivity of wax, layers of copper wire mesh were immersed in the wax. Experiments were run for volume ratios of 2%, 3%, and 4%, varying mass flow rate of ethylene glycol in each case. Some of the important results are as follows : (1) The wire mesh enhanced the conductive hea transfer and thus, helped even out the temperature distribution in the wax : (2) The increase of the number of layers of wire mesh increased the conduction. However, it also resulted in increasing the resistance to the convective motion of liquefied wax : and (3) There is an optimal number of layers of wire mesh, maximizing the performance of the storage system, which occurred at a volume ratio of $3{\sim}4%$ in the present study.

  • PDF

Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material (상변화물질의 대류유동 및 열전달 현상에 관한 연구)

  • Shon, Sang-Suk;Lee, Chae-Moon;Lee, Jae-Heon;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Rate Augmentation of Exothermic Hydration in the CaO Packed Bed (CaO 충전층의 수화발열반응 촉진)

  • Chung, Soo-Yull;Kim, Jong-Shik
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.91-101
    • /
    • 1994
  • Heat release characteristics of a CaO packed bed reactor which is used for a chemical heat storage device has been studied. We employed Cu-plate fins to release the heat of reaction of the CaO packed bed inside the reactor fast and effectively. Two-dimensional analysis of unsteady state heat flow inside the bed was performed as a function of time and under various conditions of the Cu-plates. It is noted that the time required to release the heat of reaction with Cu fins is reduced more than twice fast compared to that without Cu fins. That was largely dependent upon the number of Cu-plate, as well.

  • PDF

An Active Battery Charge Management Scheme with Predicting Power Generation in ESS (에너지저장시스템에서 발전량 예측을 통한 능동적 배터리 충전 관리 방안)

  • Kim, Jung-Jun;Chae, Beom-Seok;Lee, Young-Kwan;Cho, Ki-Hwan
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • Along with increasing the renewable energy utilization, many researches have paid attention on the utilization and efficiency of energy storage systems. Especially, it is required an operational model in order to actively respond with each system's failure of sub-systems in the solar energy storage system. This paper proposes an energy management scheme by estimating the newly generated power based on the solar power generation samples. With comparing the estimated battery charging power in real time and the total charging power of the battery rack, a charge model is applied to adjust the charging power, As a result, the stability of energy storage system would be improved by suppressing the battery heat while maintaining battery C-Rate.

태양열 발전 기술의 동향과 전망

  • Kim, Dong-Yun;Kim, Gyeong-Nam
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • Concentrated solar power(CSP) is receiving attention for its ability to generate dispatchable power from heat stored in thermal energy storage(TES). There are currently four types of CSP technology, however experts expect that only parabolic trough and solar tower are to survive from the market due to its higher efficiency and larger capacity in storage. While the initial cost for installing CSP plant is still expensive, the experts expect that investment cost of CSP would decline to the level which would be competitive with PV or wind in the near term future. In addition, further growth in its installation capacity is expected due to the United States and China's aggressive investments in CSP.

  • PDF