• Title/Summary/Keyword: Solar Grade Silicon

Search Result 30, Processing Time 0.027 seconds

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

Optimization of Passivation Process in Upgraded Metallurgical Grade (UMG)-Silicon Solar Cells (UMG 실리콘 태양전지의 패시베이션 공정 연구)

  • Chang, Hyo-Sik;Kim, Yoo-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Choi, Kyoon;Ahn, Jon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.438-438
    • /
    • 2009
  • We have investigated the effect of forming gas annealing for Upgraded Metallurgical Grade (UMG)-silicon solar cell in order to obtain low-cost high-efficiency cell using post deposition anneal at a relatively low temperature. We have observed that high concentration hydrogenation effectively passivated the defects and improved the minority carrier lifetime, series resistance and conversion efficiency. It can be attributed to significantly improved hydrogen-passivation in high concentration hydrogen process. This improvement can be explained by the enhanced passivation of silicon solar cell with antireflection layer due to hydrogen re-incorporation. The results of this experiment represent a promising guideline for improving the high-efficiency solar cells by introducing an easy and low cost process of post hydrogenation in optimized condition.

  • PDF

Purification of Metallurgical Grade Silicon by Plasma Torch and E-beam Treatment (플라즈마 토치와 전자빔을 이용한 금속급 실리콘 정제)

  • Eum, Jung-Hyun;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Kyung-Ja;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.618-622
    • /
    • 2010
  • Cost-effective purification methods of silicon were carried out in order to replace the conventional Siemens method for solar grade silicon. Firstly, acid leaching which is a hydrometallurgical process was preceded with grinded silicon powders of metallurgical grade (~99% purity) to remove metallic impurities. Then, plasma treatments were performed with the leached silicon powders of 99.94% purity by argon plasma at 30 kW power under atmospheric pressure. Plasma treatment was specifically efficient for removing Zr, Y, and P but not for Al and B. Another purification step by EB treatment was also studied for the 99.92% silicon lump which resulted in the fast removal of boron and aluminum. That means the two methods are effective alternative tools for removing the doping elements like boron and phosphor.

Metallurgical Refinement of Multicrystalline Silicon by Directional Solidification (일방향 응고법에 의한 다결정 실리콘의 야금학적 정련)

  • Jang, Eunsu;Park, Dongho;Yu, Tae U;Moon, Byung Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • The solar energy is dramatically increasing as the alternative energy source and the silicon(Si) solar cell are used the most. In this study, the improved process and equipment for the metallurgical refinement of multicrystalline Si were evaluated for the inexpensive solar cell. The planar plane and columnar dendrite aheadof the liquid-solid interface position caused the superior segregation of impurities from the Si. The solidification rate and thermal gradient determined the shape of dendrite in solidified Si matrix solidified by the directional solidification(DS) method. To simulate this equipment, the commercial software, PROCAST, was used to solve the solidification rate and thermal gradient. Si was vertically solidified by the DS system with Stober process and up-graded metallurgical grade or metallurgical grade Si was used as the feedstock. The inductively coupled plasma mass spectrometry (ICP) was used to measure the concentration of impurities in the refined Si ingot. According to the result of ICP and simulation, the high thermal gradient between the two phases wasable to increase the solidification rate under the identical level of refinement. Also, the separating heating zone equipped with the melting and solidification zone was effective to maintain the high thermal gradient during the solidification.

  • PDF

Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon (UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측)

  • Jeong, Kwang-Pil;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Production of the silicon feedstock for the semiconductor industry cannot meet the requirement for the solar cell industry because the production volume is too small and production cost is too high. This situation stimulates the solar cell industry to try the lower grade silicon feedstock like UMG (Upgraded Metallurgical Grade) silicon of 5$\sim$6 N in purity. However, this material contains around 1 ppma of dopant atoms like boron or phosphorous. Calculation of the composition profile of these impurities using segregation coefficient during crystal growth makes us expect the change of the type from p to n : boron rich area in the early solidified part and phosphorous rich area in the later solidified part of the silicon ingot. It was expected that the change of the growth speed during the silicon crystal growth is effective in controlling the amount of the metal impurities but not effective in reducing the amount of dopants.

Smelting and Refining of Silicon (실리콘의 제련과 정제)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • Silicon is the most abundant metal element in the Earth's crust. Metallurgical-grade silicon (MG-Si) is an important metal that has wide industrial applications, such as a deoxidizer in the steelmaking industry, alloying elements in the aluminum industry, the preparation of organosilanes, and the production of electronic-grade silicon, which is used in the electronics industry as well as solar cells. MG-Si is produced industrially by the reduction smelting of silicon dioxide with carbon in the form of coal, coke, or wood chips in electric arc furnaces. MG-Si is purified by chemical treatments, such as the Siemens process. Most single-crystal silicon is produced using the Czochralski method. These smelting and refining methods will be helpful for the development of new recycling processes using secondary silicon resources.

Removal of Fe from Metallurgical Grade Si by Directional Solidification (일방향 응고에 의한 금속급 실리콘 중 Fe 제거)

  • Sakong, Seong-Dae;Son, Injoon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.20-26
    • /
    • 2021
  • Solar grade silicon (SoG-Si) has been commercially supplied mainly from off-grade high-purity silicon manufactured for electronic-grade Si (EG-Si). Therefore, for wider application of solar cells, the development of a refining process at a considerably lower cost is required. The most cost-effective and direct approach for producing SoG-Si is to purify and upgrade metallurgical-grade Si (MG-Si). In this study, directional solidification of molten MG-Si was conducted in a high-frequency induction furnace to remove iron from molten Si. The experimental conditions and results were also discussed with respect to the effective segregation coefficient, Scheil equation, and Peclet number. The study showed that when the descent velocity of the specimen decreased, the macro segregations of impurities and ingot purities increased. These results were derived from the decrease in the effective segregation coefficient with the decrease in the rate of descent of the specimen.

Phosphorus Diffusion and Gettering in a Solar Cell Process using UMG Silicon (UMG 실리콘을 이용한 태양전지 공정에서 Phosphorus 확산과 게터링)

  • Yoon, Sung-Yean;Kim, Jeong;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.637-641
    • /
    • 2012
  • Due to its high production cost and relatively high energy consumption during the Siemens process, poly-silicon makers have been continuously and eagerly sought another silicon route for decades. One candidate that consumes less energy and has a simpler acidic and metallurgical purification procedure is upgraded metallurgical-grade (UMG) silicon. Owing to its low purity, UMG silicon often requires special steps to minimize the impurity effects and to remove or segregate the metal atoms in the bulk and to remove interfacial defects such as precipitates and grain boundaries. A process often called the 'gettering process' is used with phosphorus diffusion in this experiment in an effort to improve the performance of silicon solar cells using UMG silicon. The phosphorous gettering processes were optimized and compared to the standard POCl process so as to increase the minority carrier lifetime(MCLT) with the duration time and temperature as variables. In order to analyze the metal impurity concentration and distribution, secondary ion mass spectroscopy (SIMS) was utilized before and after the phosphorous gettering process.

Fabrication of Low cost, High Efficiency Single Crystal Silicon Solar Cells (저가.고효율 단결정 실리콘 태양전지의 제조)

  • Lee, Kyu-Chung;Kim, In-Sik;Nam, Hyo-Jin;Park, Chul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.102-109
    • /
    • 1994
  • Low cost high efficiency single crystal silicon solar cells for terrestrial applications have been fabricated by using inexpensive materials such as solar grade silicon wafer and pastes, and mass production processes such as screen printing and spray. Under 100 mW/cm$^2$ (AM 1.5) and $25^{\circ}C$ conditions conversion efficiency of 16.48% was obtained by anon fire-thru process and 15.55% by fire-thru process.

  • PDF

Study metal-grade silicon manufacturing and slag refining for the production of silicon solar cell (태양전지용 실리콘 생산을 위한 금속급 실리콘 제조와 슬래그 정련 연구)

  • Lee, Sangwook;Kim, Daesuk;Park, Dongho;Moon, Byung Moon;Min, Dong Jun;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.111.2-111.2
    • /
    • 2011
  • 야금학적 방법을 통한 태양전지용 실리콘 제조를 위하여 아크로(Arc furnace)에서 제조된 용융 상태의 금속급 실리콘을 슬래그와 직접 반응시켜 불순물을 제거하는 공정에 관한 연구를 수행하였다. 이를 위해 아크로와 고주파 유도용해로(High-frequency induction furnace)를 이용하여 금속급 실리콘을 제조와 정련 특성 실험을 수행하였다. 본 연구에서 금속급 실리콘을 제조하기 위한 장비로 150kW급-DC 아크로와 300kW급-AC 아크로를 사용하였다. 원재료로 규석, 코크스(Cokes), 숯, 그리고 우드칩(Wood chip)을 실험 비율에 맞춰 아크로 내부에 장입하고, 이를 용융환원 방법을 통해 반응을 시켰다. 이때 생산된 금속급 실리콘의 순도는 약 99.2~99.8% 이었으며, 원재료의 순도, 장입 비율 및 아크로 운전 특성에 따라 편차가 있다. 아크로에서 생산된 금속급 실리콘의 경우 인(phosphorus), 붕소(boron)를 다량 함유하고 있고, 이를 제거하기 위하여 50kW급 고주파 유도용해로 장비를 사용하여 슬래그 정련 실험을 수행하였다. 슬래그 정련시 사용한 성분은 SiO2, CaO 그리고 CaF2 이며, 금속급 실리콘과 슬래그의 질량비 및 반응 시간에 따른 실리콘 불순물 특성을 평가하였다. 실험결과 인과 붕소는 각각 1 ppm 이하, 5 ppm 이하 였으며, 칼슘을 제외한 대부분의 금속 불순물의 경우 0.1~0.2% 임을 확인하였다.

  • PDF