• Title/Summary/Keyword: Solar Concentration

Search Result 547, Processing Time 0.025 seconds

On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area (기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구)

  • 정영진;이동인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells (P3HT:PCBM 층 내 분산 가능한 금속 나노입자의 제조 및 이를 포함한 고분자 태양전지 소자의 특성에 관한 연구)

  • Kim, Min-Ji;Choi, Gyu-Chae;Kim, Young-Kuk;Kim, Yang-Do;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.

Characteristic of the Radiation Heat Flux Distribution for the KIER Solar Furnace (KIER 태양로의 열유속 분포 특성)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Kang, Yong-Heack;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74-79
    • /
    • 2011
  • Concentration characteristics of the KIER solar furnace are analyzed with a heat flux measurement technique. Total heat capacity of 40kW was confirmed within 1.04% average error, and the normalized maximum heat flux of 3,452 $kW/m^2$ was proved. Non-Gaussian flux distribution in the vertical direction implies that reflectors should not be random rather inclined downwards. Moreover, we characterized flux distribution variations with furnace blind opening ratio, distance from the focal plane, and misalignment of the measurement system. Based on the results, the heat flux distribution can be simply estimated once reflectivity and direct normal insolation values are known. This study will be helpful to the design and the performance evaluation of receivers or chemical reactors.

  • PDF

Optimization of the tunnel Diode for GaAs/Ge Tandem Solar Cell (GaAs/Ge Tandem Solar Cell에 관한 터널 다이오드 최적화 연구)

  • Yang, S.M.;O, B.G.;Lee, M.G.;Cha, In-Su
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 1998
  • In two terminals monolithic tandem solar cells, tunnel diode is an important variable to improve conversion efficiency depending on current matching between the top and the bottom cells. Especially, the GaAs/Ge tandem is one of the most interesting cells for its high potential efficiency. This paper shows that physical analysis about I-V specific character of the GaAs/Ge solar cell, which is grown by MOCVD for GaAs or CVD for Ge, using computer simulation and experimental results, varying with thickness of the tunnel diode layer and concentration.

  • PDF

Thermal Concentration Characteristic of Flat Plate Solar Collector for Application on the Sea (해상적용 평판형 태양열 집열기의 집열특성)

  • Ji, M.K.;Jeong, H.M.;Chung, H.S.;Lee, C.J.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.9-16
    • /
    • 2000
  • This paper represents the heat storage performance of the flat plate solar collector. This research aims to application for fishing ship on the sea, and the solar collector has among of motions with pitching and rolling thus, this collector has to be a forced type circulation. In this research, we investigated the solar collector performance for the various collector tilt angle. As the experimental results with three types, we found that the S-type collector was excellent.

  • PDF

Transparent Counter Electrode for Quantum Dot-Sensitized Solar Cells with Nanotube Electrodes (나노튜브 전극 기반 양자점 감응 태양전지 구현을 위한 투명한 상대전극)

  • Kim, Jae-Yup
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • Anodic oxidized $TiO_2$ nanotube arrays are promising materials for application in photoelectrochemical solar cells as the photoanode, because of their attractive properties including slow electron recombination rate, superior light scattering, and smooth electrolyte diffusion. However, because of the opacity of these nanotube electrodes, the back-side illumination is inevitable for the application in solar cells. Therefore, for the fabrication of solar cells with the anodic oxidized nanotube electrodes, it is required to develop efficient and transparent counter electrodes. Here, we demonstrate quantum dot-sensitized solar cells (QDSCs) based on the nanotube photoanode and transparent counter electrodes. The transparent counter electrodes based on Pt electrocatalysts were prepared by a simple thermal decomposition methods. The photovoltaic performances of QDSCs with nanotube photoanode were tested and optimized depending on the concentration of Pt precursor solutions for the preparation of counter electrodes.

A Revaluation of Solar Energy Resources in Korea (국내 태양에너지 자원의 재평가)

  • Jo, D.K.;Chun, I.S.;Jeon, M.S.;Kang, Y.H.;Auh, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.73-83
    • /
    • 2001
  • Since the solar radiation is the main input for sizing any solar system, it will be necessary to understand and evaluate the insolation data. The horizontal global insolation data have been measured since May, 1982 and direct normal solar insolation data since December 1990 at 16 different sites all over the country and considerable effort has been made for constructing a standard value from measured data at each station. In the results, the average global total solar radiation of the nation is $3,055kcal/m^2.day(12.79MJ/m^2.day)$ and the average clear day direct normal solar beam radiation was $4,600kcal/m^2.day(19.26MJ/m^2.day)$, which indicates possible solar energy application of medium and high temperature technologies with high concentration.

  • PDF

A Study on the Dynamic Performance of a Solar Absorption Cooling System (태양열 흡수식 냉방 시스템의 동특성 연구)

  • Baek, N.C.;Lee, J.K.;Yang, Y.S.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.81-87
    • /
    • 1998
  • Solar energy has been experiencing renewed interest because of the recent economical crisis in Korea. Absorption cooling is one of the promising solar energy utilization technologies. In this study the dynamic performance of a solar driven absorption cooling machine(SDACM) was numerically investigated. The simulated machine is a commercially available water/LiBr single effect absorption chillers driven by hot water from solar collectors. The present study has been directed to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collector, a hot water storage tank, fan coil units, and the air-conditioned space. The operation of the system was simulated for 9 hours in varying operation conditions. The variation of temperature and concentration in the system components, and that of heat transfer rates in the system were obtained. It was also found that the room temperature was maintained near the desired value by controlling the mass flow rate of hot water.

  • PDF

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.212-220
    • /
    • 2015
  • We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.

Transparent Thin Film Dye Sensitized Solar Cells Prepared by Sol-Gel Method

  • Senthil, T.S.;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1188-1194
    • /
    • 2013
  • Transparent $TiO_2$ thin films have been prepared by sol-gel spin coating method. The sols used for deposition of thin films were prepared with different ethanol content. The effect of ethanol (solvent) concentration and annealing temperature on the performance of $TiO_2$ thin film solar cells has been studied. The results indicate that the as deposited films are amorphous in nature. $TiO_2$ thin films annealed at temperatures above $350^{\circ}C$ exhibited crystalline nature with anatase phase. The results also indicated that the crystallinity of the films improved with increase of annealing temperature. The high resolution transmission electron microscope images showed lattice fringes corresponding to the anatase phase of $TiO_2$. The band gap of the deposited films has been found to decrease with increase in annealing temperature and increase with increase in ethanol concentration. The dependents of photovoltaic efficiency of the dye-sensitized $TiO_2$ thin film solar cells (DSSCs) with the amount of ethanol used to prepare thin films was determined from photocurrent-voltage curves.