Browse > Article
http://dx.doi.org/10.4150/KPMI.2014.21.3.179

Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells  

Kim, Min-Ji (Powder&Ceramics Division, Korea Institute of Materials Science)
Choi, Gyu-Chae (Powder&Ceramics Division, Korea Institute of Materials Science)
Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
Kim, Yang-Do (Department of Material Engineering, Pusan National University)
Baek, Youn-Kyoung (Powder&Ceramics Division, Korea Institute of Materials Science)
Publication Information
Journal of Powder Materials / v.21, no.3, 2014 , pp. 179-184 More about this Journal
Abstract
In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.
Keywords
Metal nanoparticles; Polymer solar cells; Dispersion; Organic ligand; Active layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Xia and N. J. Halas: MRS Bulletin, 30 (2005) 338.   DOI
2 C. Lungenschmied and A. Meyer: Sol. Energy Mater. Sol. Cells, 91 (2007) 379.   DOI   ScienceOn
3 G. Li, R. Zhu and Y. Yang: Nat. Photonics, 6 (2012) 153   DOI
4 H. S. Choi, J. P. Lee, S. J. Park and J. Y. Kim: Nano Lett., 13 (2013) 2204.   DOI   ScienceOn
5 S. W. Baek, J. H. Noh, C. H. Lee, M. K. Seo and J. Y. Lee: Scientific Report, 3 (2013) 1726.   DOI
6 H. C. Chen, S. W. Chou, W. H. Tseng, C. I. Wu and P. T. Chou: Adv. Funct. Mater., 22 (2012) 3975.   DOI   ScienceOn
7 Z. Xu, C. Shen, Y. l. Hou, H. j. Gao and S. Sun: Chem. Mater., 21 (2009) 1778.   DOI
8 J. M. Kim, J. H. Park, C. K. Lee and S. Y. Lee: Scientific Report, 4 (2013) 4602.
9 S. H. Park, D. Moses, M. Leclerc, K. H. Lee and A. J. Heeger: Nat. Photon., 3 (2009) 297.   DOI   ScienceOn
10 X. Li, H. Lu, W. C. H. Choy, W. E. I. Sha and A. H. P. Ho: Adv. Funct. Mater., 23 (2013) 2728.   DOI   ScienceOn
11 S. S. Kim, S. I. Na, D. Y. Kim and Y. C. Nah: Appl. Phys. Lett., 93 (2008) 073307.   DOI   ScienceOn
12 C. Li, J. Mei, S. Li, N. Lu, L. Wang, B. Chen and W. Dong: Nanotechnology, 21 (2010) 245602.   DOI   ScienceOn