• Title/Summary/Keyword: Solar City

Search Result 173, Processing Time 0.028 seconds

Relationship Between Ozone Concentrations and Affecting factors in Seosan City of Korea (충남 서산지역 대기 중의 오존농도와 그 영향인자와의 관련성)

  • Kim, Jun-Kyeom;Jeong, Yong-Jun;Cho, Young-Chae
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.78-88
    • /
    • 2003
  • This study was conducted to investigate the relation between ozone concentration and the affecting factors in Seosan City of Korea from Jan. 2002 to Dec. 2002. We analyzed the air pollutants such as NO$_2$, PM$_{10} $,SO$_2$, CO and the meteorological factors including solar radiation, air temperature, wind speed and relative humidity. The analytical data were taken statistics by SPSS method. The results were as follows: The seasonal average concentration of ozone were detected 35.0 ppb in Spring, 25.4 ppb in Summer, 23.5 ppb in Autumn and 21.4 ppb in Winter. So the difference of concentrations showed significantly in statistics. The hourly ozone concentration in a day was increased at 7-9 AM, peaked at 3-4 PM. The correlation coefficients was negative to ozone concentration and NO$_2$, SO$_2$, CO, relative humidity, but positive to solar radiation, air temperature, wind speed. With stepwise multiple regression analysis on the 8 factors such as NO$ _2$, PMSO$_{10}$,SO$_2$, CO, solar radiation, air temperature, wind speed and relative humidity, the seasonal primary factors were air temperature in spring, relative humidity in summer and solar radiation in autumn and winter. The above results suggest that ozone is the secondary pollutant by photochemical reaction as the concentration of ozone was increased with the raise of solar radiation.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

The Land Surface Temperature Distributions of Jeju Island using Landsat 7/ETM+ Data

  • Lee Byung-Gul
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.109-113
    • /
    • 2005
  • In this study, the estimation of the temperature distribution of Jeju Island with coastal ocean derived from the thermal band of Landsat 7/ETM+ of January 6, 2003 was carried out. For the computation of the temperature of the island and the coastal ocean based on the thermal band, we used NASA method wiich is the 8 bit Digital Number(DN) converted into spectral radiance. The computed results showed that the land temperature variations were from 0 to 12 Celsius degrees, and a good agreement with the observation ones based on the method. However, the ocean surface temperature was not much changed ground 15 degree since the water was well mixed between the coastal and the offshore ocean. The interesting results were that the temperature distributions of the southern part(Seogwipo City) of Jeju Island were higher than those of the north one(Jeju City) by more than 2 Celsius degree at the same height although the distance between the Jeju and the Seogwipo is only about 35km in winter season. The reason was found that the solar irradiance intensity of the south part was stronger than the north one by Halla mountain in winter season only. From the results, we found that the seasonal variations of solar irradiation and the height of Mt. Halla were an important role of temperature distribution of Jeju Island.

Observation and Analysis of Radiation Characteristics According to the Type of City During the Summer Season - Focus on the Daegu Metropolitan City and the Surrounding Four Regions - (하절기 도시 유형별 복사특성 관측과 분석 -대구광역시와 인근 4개 지역을 중심으로-)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.21-31
    • /
    • 2015
  • The purpose of this study is to understand the characteristics of urban climate in several cities, from observing radiation according to wavelength band(UV, short and long wave radiation). Observation start from 5 May to 31 August 2013. The followings are the main results from this study. 1) In every observation area, greater amounts of short-wave radiation have been recorded in May compared to June. Even though the highest solar elevation occurs in June, May sees clearer days, which has attributed to the outcome. 2) The analysis concerning the correlation between ultraviolet radiation and shortwave radiation have revealed that regions closer to the Daegu area have stronger correspondence. 3) The time series of daily long-wave radiation shares a similar tendency with the time series of air temperature, and the maximum value was recorded at 14:00 and 15:00.

Comparison of Wind Energy Density Distribution Using Meteorological Data and the Weibull Parameters (기상데이터와 웨이블 파라메타를 이용한 풍력에너지밀도분포 비교)

  • Hwang, Jee-Wook;You, Ki-Pyo;Kim, Han-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.54-64
    • /
    • 2010
  • Interest in new and renewable energies like solar energy and wind energy is increasing throughout the world due to the rapidly expanding energy consumption and environmental reasons. An essential requirement for wind force power generation is estimating the size of wind energy accurately. Wind energy is estimated usually using meteorological data or field measurement. This study attempted to estimate wind energy density using meteorological data on daily mean wind speed and the Weibull parameters in Seoul, a representative inland city where over 60% of 15 story or higher apartments in Korea are situated, and Busan, Incheon, Ulsan and Jeju that are major coastal cities in Korea. According to the results of analysis, the monthly mean probability density distribution based on the daily mean wind speed agreed well with the monthly mean probability density distribution based on the Weibull parameters. This finding suggests that the Weibull parameters, which is highly applicable and convenient, can be utilized to estimate the wind energy density distribution of each area. Another finding was that wind energy density was higher in coastal cities Busan and Incheon than in inland city Seoul.

Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication (다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구)

  • Jeong, Hye-Jeong;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2010
  • Polycrystalline silicon (pc-Si) films are fabricated and characterized for application to pc-Si thin film solar cells as a seed layer. The amorphous silicon films are crystallized by the aluminum-induced layer exchange (ALILE) process with a structure of glass/Al/$Al_2O_3$/a-Si using various thicknesses of $Al_2O_3$ layers. In order to investigate the effects of the oxide layer on the crystallization of the amorphous silicon films, such as the crystalline film detects and the crystal grain size, the $Al_2O_3$ layer thickness arc varied from native oxide to 50 nm. As the results, the defects of the poly crystalline films are increased with the increase of $Al_2O_3$ layer thickness, whereas the grain size and crystallinity are decreased. In this experiments, obtained the average pc-Si sub-grain size was about $10\;{\mu}m$ at relatively thin $Al_2O_3$ layer thickness (${\leq}$ 16 nm). The preferential orientation of pc-Si sub-grain was <111>.

A Study on IoT/LPWA-based Low Power Solar Panel Monitoring System for Smart City (스마트 시티용 IoT/LPWA 기반 저전력 태양광 패널 모니터링 시스템에 관한 연구)

  • Trung, Pham Minh;Mariappan, Vinayagam;Cha, Jae Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.74-82
    • /
    • 2019
  • The revolution of industry 4.0 is enabling us to build an intelligent connection society called smart cities. The use of renewable energy in particular solar energy is extremely important for modern society due to the growing power demand in smart cities, but its difficult to monitor and manage in each buildings since need to be deploy low energy sensors and information need to be transfer via wireless sensor network (WSN). The Internet of Things (IoT) / low-power wide-area (LPWA) is an emerging WSN technology, to collect and monitor data about environmental and physical electrical / electronics devices conditions in real time. However, providing power to IoT sensor end devices and other public electrical loads such as street lights, etc is an important challenging role because the sensor are usually battery powered and have a limited life time. In this paper, we proposes an efficient solar energy-based power management scheme for smart city based on IoT technology using LoRa wide-area network (LoRaWAN). This approach facilitates to maintain and prevent errors of solar panel based energy systems. The proposed solution maximizing output the power generated from solar panels system to distribute the power to the load and the grid. In this paper, we proved the efficiency of the proposed system with Simulink based system modeling and real-time emulation.

A Study on the Energy Consumption Analysis and Improvement of Busan City Public Building (부산시 공공건축물의 에너지사용량 분석 및 개선방안 연구)

  • Kim, Sam-Uel;Kim, Se-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • The energy used in Korea is strongly dependent on that produced by foreign countries. Accordingly, saving energy is more important than ever, because of the rise of international oil prices and depletion of oil resources. The development of energy efficient buildings is required especially for public buildings in Korea. In this study, the energy use of public buildings is identified. Then, the analysis of energy usage through regional offices in Busan City offers energy saving measures for public buildings.

A study on the calculation of greenhouse gas from the industry sector using bottom-up methodology (상향식 방법을 이용한 산업 부분의 온실가스 배출량 산정 연구)

  • An, Jae-Ho;Ahn, Sang-Jueon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.34-43
    • /
    • 2010
  • Recently environmental regulations like the Kyoto Protocol, adopted in 1997, required the reduction of the greenhouse gas of 5.2% up to 1990 regulations. and 13th General Assembly in 2007, held in Bali of India, have agreed to duty reduction even in developing countries in 2013. Because of the lack of information about real process in small or middle size industries, most recent research omitted to calculate green house gas emissions from the industrial process. Bottom-up methodology will be applied for calculation of green house gasemission from industry sector to solve these problems in this research. Total amount from industry sector of Shicheung-City in 2007 was about 1,797,305 tons of greenhouse gas $CO_2$ and 3,049,403 tons of the greenhouse gas $CO_2$ calculated from industry sector of Ansan-City in 2007.

Atmospheric Clearness Index Analysis of Major Cities in Korea Peninsula Using Solar Radiation Measurement (태양에너지 측정에 의한 한반도 주요 도시의 대기청명도 분석)

  • Jo, Dok-Ki;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • The amount of incident solar rays on inclined surfaces with various directions has Since the atmospheric clearness index is main factor for evaluating atmosphere environment, it is necessary to estimate its characteristics all over the major cities in Korea Peninsula. We have begun collecting clearness index data since 1982 at 16 different cities in South Korea and estimated using empirical forecasting models at 12 different stations over the North Korea from 1982 to 2006. This considerable effort has been made for constructing a standard value from measured data at each city. The new clearness data for global-dimming analysis will be extensively used by evaluating atmospheric environment as well as by solar application system designer or users.

  • PDF