• Title/Summary/Keyword: Solar Absorber

Search Result 242, Processing Time 0.03 seconds

Characteristic Analysis and Preparation of Multi-layer TiNOx Thin Films for Solar-thermal Absorber (태양열 흡수판용 복층 TiNOx 박막의 제조와 특성 분석)

  • Oh, Dong-Hyun;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.820-824
    • /
    • 2014
  • TiNOx multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. 4 multi-layers of $TiO_2$/TiNOx(LMVF)/TiNOx(HMVF)/Ti/substrate have been prepared with ratio of Ar and ($N_2+O_2$) gas mixture. $TiO_2$ of top layer is anti-reflection layer on double TiNOx(LMVF)/TiNOx(HMVF) layers and Ti metal of infrared reflection layer. In this study, the crystallinity and surface properties of TiNOx thin films were estimated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM), respectively. The grain size of TiNOx thin films shows to increase with increasing sputtering power. The composition of thin films has been investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The TiNOx multi-layer films show the excellent optical performance beyond 9% of reflectance in those ranges wavelength.

Preparation of methylammonium lead halide perovskite thin films by dual feed ultrasonic spray method (이중주입 초음파분무법에 의한 메틸암모늄 할로젠화 납 페로브스카이트 박막의 제조)

  • Kim, Rock Yoon;Kim, Tae Huei;Park, Kyung Bong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.6-11
    • /
    • 2019
  • Methylammonium lead halide ($MAPbX_3$, X = I, Br) thin films, used as the light absorber of perovskite solar cells, were prepared using the dual feed ultrasonic spray method. Going through a deposition at a substrate temperature of below $60^{\circ}C$ and then a final heat treatment at $75^{\circ}C$ for 5 minutes using dual feed ultrasonic spray method, $MAPbI_3$ single phase could be formed. Whereas undergoing a deposition at temperatures above $80^{\circ}C$, the spheroidal grains could be changed into rod-shaped fractal structures due to the decomposition of the perovskite phase. Furthermore, using the same method at a higher heat treatment temperature of $100^{\circ}C$, $MAPbI_{3-x}Br_x$ thin films could also be formed from $MAPbI_3$ and $MAPbIBr_2$ solution.

Effect of thermal treatment on spray deposited CdTe thin films (스프레이 증착법을 이용한 CdTe박막의 열처리에 따른 특성 분석)

  • Lee, Jinyoung;Hwang, Sooyeun;Lee, Taejin;Ryu, Siok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • Polycrystalline CdTe thin films for solar cell continues to be a promising material for the development of cost effective and reliable photovoltaic processes. The two key advantages of this material are its high optical absorption coefficient and its near ideal band gap for photovoltaic conversion efficiency of 1.4-1.5 eV. In this study we made the CdTe thin films for solar cell application which was deposited on the glass substrates using a modified chemical spray method at low temperature. This process does not require the sophisticated and expensive vacuum systems. The prepared CdTe films were characterized with the aid of scanning electron microscope (SEM), UV-visible spectrophotometer, and X-ray diffraction spectrometer (XRD). Following are results of a study on the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Tehnology(MEST) and the National Research Foundation of Korea(NRF).

  • PDF

Selenization of CIG Precursors Using RTP Method with Se Cracker Cell

  • Kang, Young-Jin;Song, Hye-Jin;Cho, You-Suk;Yoon, Jong-Man;Jung, Yong-Deuk;Cho, Dea-Hyung;Kim, Ju-Hee;Park, Su-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.426-426
    • /
    • 2012
  • The CIGS absorber has outstanding advantages in the absorption coefficient and conversation efficiency. The CIGS thin film solar cells have been researched for commercialization and increasing the conversion efficiency. CIG precursors were deposited on the Mo coated glass substrate by magnetron sputtering with multilayer structure, which is CuIn/CuGa/CuIn/CuGa. Then, the metallic precursors were selenized under high Se pressure by RTP method which included. Se vapor was supplied using Se cracker cell instead of toxic hydrogen selenide gas. Se beam flux was controlled by variable reservoir zone (R-zone) temperature during selenization process. Cracked Se source reacted with CIG precursors in a small quantity of Se because of small size molecules with high activation energy. The CIGS thin films were studied by FESEM, EDX, and XRD. The CIGS solar cell was also developed by layering of CdS and ZnO layers. And the conversion efficiency of the CIGS solar cell was characterization. It was reached at 6.99% without AR layer.

  • PDF

Characteristics of $Cu_2ZnSnSe_4$ Thin Film Solar Absorber Prepared by PLD using Solid Target (광흡수층 적용을 위한 PLD용 $Cu_2ZnSnSe_4$ 타겟 제조와 증착 박막의 특성)

  • Jung, Woon-hwa;Rachmat, Adhi Wibowo;Kim, Kyoo-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.130-133
    • /
    • 2009
  • $Cu_2ZnSnSe_4$(CZTSe) is one of the promising materials for the solar cell due to its abundant availability in the nature. In this study, we report the fabrication of CZTSe thin film by Pulsed Laser Deposition(PLD) method using quaternary compound target on sodalime glass substrate. The quaternary CZTSe compound target was synthesized by solid state reaction method using elemental powders of Cu, Zn, Sn and Se. Powders were milled in high purity ethanol using zirconia ball with mixed size of 1 and 3 mm at the same proportions for 72 hours milling time. The structural, chemical and mechanical properties of the synthesized CZTSe powders were investigated prior to the deposition process. The CZTSe compound powder, and $500^{\circ}C$ of sintering temperature shows the best properties for PLD target. Results show that the as-deposited CZTSe thin films with the precursors by PLD have a composition near-stoichiometric.

  • PDF

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Application Performances of the Simplified Solar Collectors and for the Drying of Red Pepper (간이(簡易) 태양열(太陽熱) 집열기(集熱器)의 유형별(類型別) 분석(分析) 및 고추건조(乾燥)에의 이용(利用))

  • Choi, Boo-Dol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.479-484
    • /
    • 1986
  • Two different types of solar collector for farm dryer- the flatplate type and the modified tubular type-were constructed and analyzed on their performances. The transparent plastic film, black painted galvanized iron sheet and black vinyl film were used for the cover and absorber of the flat-plate types. The simplified tubular type was constructed with transparent films for the cover and black vinyl films for the absorber Two elliptical iron rings were used to form a tubular shape through which air could pass. No remarkable differences were found in thermal efficiences between the absorbers made with galvanized iron sheet and black vinyl film. The average thermal efficiencies of the solar collectors were 42.8%(max.48.2%, min.38.2%) for flat plate type and 22.971 (max. 25.4%, min. 14.8%)) for tubular one. The empirical equations were proved to be applicable to the prediction of temperature elevation. The tubular solar heat collector was successfully applied to red peppers drying as a practical farm dryer. The drying rate was almost doubled compared to a conventional sun drying.

  • PDF

Relationship between the porosity of the nanostructured $TiO_2$ electrode and Dye Loading for Dye-sensitized Solar Cells (염료감응태양전지를 위한 $TiO_2$ 분말 기공도와 염료 흡착량의 관계)

  • Hwang, Seongjin;Jung, Hyunsang;Jeon, Jaeseung;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSC) show great promise as an inexpensive alternative to conventional p-n junction solar cells. Investigations into the various factors influencing the photovoltaic efficiency have recently been intensified. The conventional absorber electrode in DSSC is composed of compacted or sintered $TiO_2$ nanopowder that carries an anchored organic dye. The absorbance of incident light in the DSC is realized by specifically engineered dye molecules placed on the semiconductor electrode surface ($TiO_2$). The dye absorbs light at wavelengths up to about 920nm, the energy of the exited state of the molecule should be about 1.35eV above the electronic ground state corresponding to the ideal band gap of a single band gap solar cell. The dye molecules ar adhered onto the nanostrutured $TiO_2$ electrode by immersing the sintered electrode into a dye solution, typically 3mM in alcohol, for a long enough period to fully impregnate the electrode. However, the concentrations of the dye is slightly changed due to the evaporation of the alcohol. The dye is more expensive than other materials in DSSC and related to the efficiency of DSSC. Therefore, the concentrations of the dye should be carefully measured. In this study, we investigated to the dye loading on fired $TiO_2$ powder as a function of temperature by the TG-DTA and the dye solution by UV-visible spectroscopy after the impregnation process. The dye loading is related to the porosity of the nanostructured $TiO_2$ electrode.

  • PDF

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.