• Title/Summary/Keyword: Solar Absorber

Search Result 242, Processing Time 0.024 seconds

Fabrication of Flexible CIGS thin film solar cells using STS430 substrate (STS430 기판을 이용한 Flexible CIGS 박막 태양전지 제조)

  • Jung, Seung-Chul;Ahn, Se-Jin;Yun, Jae-Ho;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.436-437
    • /
    • 2008
  • Flexible CIGS thin film solar cell was fabricated using STS430 plate as a flexible substrate in this work. A diffusion barrier layer of $SiO_2$ thin film was deposited on STS430 substrate by PECVD followed by deposition of double layered Mo back contact. After depositing CIGS absorber layer by co-evaporation, CdS buffer layer by chemical bath deposition, ZnO window layer by RF sputtering and Al electrode by thermal evaporation, the solar cell fabrication processes were completed and its performance was evaluated. Corresponding solar cell showed an conversion efficiency of 8.35 % with $V_{OC}$ of 0.52 V, $J_{SC}$ of 26.06 mA/$cm^2$ and FF of 0.61.

  • PDF

Effects of Ga contents on the performance of CIGS thin film solar cells fabricated by co-evaporation technique (Ga 조성이 동시진공 증발법으로 제조된 CIGS 태양전지 특성에 미치는 영향)

  • Jung, Sung-Hun;Yun, Jae-Ho;Ahn, Se-Jin;Yoon, Kyung-Hoon;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.438-440
    • /
    • 2008
  • Effects of Ga contents of CIGS absorber layer on the performance of thin films solar cells were investigated. As Ga content increased, the grain size of CIGS films decreased presumably because Ga diffusion during 2nd stage of co-evaporation process is more difficult than In diffusion. Performances of corresponding solar cell show systematic dependence on Ga content in which open circuit voltage increases and short circuit current and fill factor decrease as Ga contents increases. At a optimal condition of Ga/(In+Ga)=0.27, the solar cell shows a conversion efficiency of 15.6% with $V_{OC}$ of 0.625 V, $J_{SC}$ of 35.03 mA/$cm^2$ and FF of 71.3%.

  • PDF

The Performance and Efficiency Analysis of PVT system : A Review (선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석)

  • Euh, Seung-Hee;Kim, Dae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.57-66
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box channel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency, cutting down the cost, and making them more competitive in the energy consumption market.

Recent Progress in Flexible Perovskite Solar Cell Development

  • Ren, Xiaodong;Jung, Hyun Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.325-336
    • /
    • 2018
  • Perovskite solar cells (PSCs) are a new class of photovoltaic devices, which have attracted significant attention due to their remarkable optoelectrical properties, including high absorption coefficients, high carrier mobilities, long carrier diffusion lengths, tunable bandgaps, low cost, and facile fabrication. PSCs have reached efficiencies of 22.70% and 18.36% on rigid fluorine-doped tin oxide and poly(ethylene terephthalate) substrates, respectively; these are comparable to those of single-crystal silicon and copper-indium-gallium-selenium solar cells. Over the past eight years, the photo conversion efficiency of PSCs has been significantly improved by device-architecture adjustments, and absorber and electron/hole transport layer optimization. Each layer is important for the performance of PSCs; hence, we discuss achievements in flexible perovskite solar cells (FPSCs), covering electron/hole-transport materials, electrode materials. We give a comprehensive overview of FPSCs and put forward suggestions for their further development.

A Study on Thermal Characteristics of Hybrid Solar Receiver for Dish Concentrating System (고온용 태양열 복합 흡수기의 열특성 분석 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Kim, Nack-Joo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.571-575
    • /
    • 2006
  • To improve economic of solar power generation, stirling engine is required continuous operation and the receiver has to be provided with an additional combustion system. The hybrid receiver with a specially adapted combustion system is possible to 24 hr/day operation by solar and gas-fired. The inner cavity and external wall serve as absorber surfaces using collected irradiation and heat transfer surfaces for the gas heat flow, respectively. The hybrid receiver was designed and fabricated for the dish/stirling system. The analytical method for pridicting natural convective heat loss from receiver is used. The Koenig and Marvin model is used to estimate convection heat loss and heat transfer coefficiency.

  • PDF

Study on the Optical Performance of Evacuated Solar Collectors (진공복사관식 집열기의 성능실측 및 최적화 연구)

  • Chun, Won-Gee;Kang, Sang-Hoon;Kim, Ki-Hong;Lee, Yong-Kuk;Chang, Rae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.63-71
    • /
    • 2001
  • This work has been carried out to find the ideal operating conditions for solar vacuum tube collectors which are widely used at present. Various types of solar collectors including a flat plate one were experimentally tested and examined to determine their thermal efficiencies and operating characteristics. Generally, solar vacuum tubes can be classified into two groups according to their design features. Of these, one is characterized by the insertion of a metallic device(such as a finned heat pipe) in an evacuated glass tube for the collection and transportation of solar energy. The other utilizes double glass tubes where the smaller one is contained inside the bigger one and soldered to each other after the small gap between them is evacuated. Both of these solar collectors are designed to minimize convection heat losses by removing the air which is in direct contact with the absorber surface. The performance of the former type can be readily analyzed by applying the relevant correlations developed for flat plate solar collectors. This has been demonstrated in the present study for the case of a solar collector where a heat pipe is inserted in an evacuated tube.

  • PDF

The effects of Se evaporation temperature on CIS absorber layer fabricated by non-vacuum process (Se 증발온도가 비진공 공정으로 제조한 CIS 광흡수층에 미치는 영향)

  • Park, Myoung-Guk;Ahn, Se-Jin;Yoon, Jea-Ho;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.441-443
    • /
    • 2008
  • A non-vacuum process for fabrication of $CuInSe_2$ (CIS) absorber layer from the corresponding Cu, In solution precursors was described. Cu, In solution precursors was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$ and methanol. The Cu, In solution precursors were mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CI/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIS absorber layer. The CIS absorber layer selenized at $530^{\circ}C$ substrate temperature for 30 min with various Se gas evaporation temperature was characterized by XRD, SEM, EDS.

  • PDF

A Study on Dynamic Simulation of a Hybrid Parallel Absorption Chiller (병렬식 하이브리드 흡수식 냉온수기 동특성 시뮬레이션 연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.630-635
    • /
    • 2008
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism have been modeled. Flow discharge coefficients of the valves and the pumps were optimized for the double-effect mode with solar-heated water circulated. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. And the cases of the double mode with and without the solar energy were compared. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the single mode utilizing the solar energy only is not practical. It is suggested to operate the system in the double mode and the flow rate control system adaptive to variable solar energy input has to be developed.

  • PDF

Window Integrated Solar Collectors (창호일체형 태양열 집열기)

  • Park, Seong-Bae;Lim, Seong-Whan;Park, Mann-Kwi
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.61-65
    • /
    • 2009
  • Window integrated solar collector is to simply install inside of the existing double glass window frame. Double glass window frame is consist of inner glass of Low-E coating and Silver coating, and outer glass of low iron reinforced glass. In order to secure natural lighting in a room, only 50% of window frame is covered with solar collectors. Solar absorption or transmission rate varies seasonally depending on sun angles. Part of inner glass where right behind of the solar plate is covered with silver coating to increase absorption rate of solar plate. The collector is made of a copper serpentine where aluminum fins are soldering. To improve the effect of insulation of inside of the window frame is recommend vacuum. As a result, we are making the 3th sample and will archieve below $F_RU_L=7.5W/m^2^{\circ}C$ that is the account of heat lossed, and above $F_R({\tau}{\alpha})=0.45$.

  • PDF

An Experimental Study on Optimum Honeycomb Sizes of a Flat-Plate Solar Collector (평판형(平板形) 태양열집열기(太陽熱集熱器)의 최적(最適)하니콤 크기에 관(關)한 연구(硏究))

  • Kim, T.J.;Kim, J.B.
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.3-11
    • /
    • 1988
  • To suppress the natural convection within enclosure spacing it has been shown theoretically and experimentally that the introduction of cell walls will effectively raise the critical Rayleigh number by providing more shear surfaces within the fluid. For a solar collector, a useful solar thermal converter requires effective control of heat losses. It has been reported that the natural convection can be suppressed and the heat performances of the solar collector increased by placing thin, poorly conducting material honeycomb between the absorber plate and the coverglass. The heat performances were measured and compared directly throughout the simultaneous installation of two solar collectors, one with honeycomb structures fabricated from thin poly carbonate sheet and the other without honeycomb structures. Various tilt angles of 30, 45 and 60 deg. from the horizontal and the honeycomb sizes ($W{\times}H$) of $10{\times}10,\;10{\times}20$ and $10{\times}40mm$ were utilized in the present investigation. It is found that the larger the tilt angle are, the greater the heat losses are, and that the smaller the honeycomb size is, the larger suppression effect of heat losses are. Especially, at tilt angles of 30 degree, the heat use ratio of solar collector with the honeycomb sizes of $10{\times}10mm$ improved approximately 29.5% more than that without honeycomb structures.

  • PDF