• Title/Summary/Keyword: Sol-gel High temperature

Search Result 185, Processing Time 0.024 seconds

Effects of the Introduction of UV Irradiation and Rapid Thermal Annealing Process to Sol-Gel Method Derived Ferroelectric Sr0.9Bi2.1Ta1.8Nb0.2O9 Thin Films on Crystallization and Dielectric/Electrical Properties (UV 노광과 RTA 공정의 도입이 Sol-Gel 법으로 제조한 강유전성 Sr0.9Bi2.1Ta1.8Nb0.2O9 박막의 결정성 및 유전/전기적 특성에 미치는 영향)

  • 김영준;강동균;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • The ferroelectric SBT thin films as a material of capacitors for non-volatile FRAMs have some problems that its remanent polarization value is relatively low and the crystallization temperature is quite high abovc 80$0^{\circ}C$. Therefore, in this paper, SBTN solution with S $r_{0.9}$B $i_{2.1}$T $a_{1.8}$N $b_{0.2}$$O_{9}$ composition was synthesized by sol-gel method. Sr(O $C_2$ $H_{5}$)$_2$, Bi(TMHD)$_3$, Ta(O $C_2$ $H_{5}$)$_{5}$and Nb(O $C_2$ $H_{5}$)$_{5}$ were used as precursors, which were dissolved in 2-methoxyethanol. SBTN thin films with 200 nm thickness were deposited on Pt/Ti $O_2$/ $SiO_2$/Si substrates by spin-coating. UV-irradiation in a power of 200 W for 10 min and rapid thermal annealing in a 5-Torr-oxygen ambient at 76$0^{\circ}C$ for 60 sec were used to promote crystallization. The films were well crystallized and fine-grained after annealing at $650^{\circ}C$ in oxygen ambient. The electrical characteristics of 2Pr=11.94 $\mu$C/$\textrm{cm}^2$, Ps+/Pr+=0.54 at the applied voltage of 5 V were obtained for a 200-nm-thick SBTN films. This results show that 2Pr values of the UV irradiated and rapid thermal annealed SBTN thin films at the applied voltage of 5 V were about 57% higher than those of no additional processed SBTN thin films. thin films.lms.s.s.

Adhesion improvement between metal and ceramic substrate by using ISG process (ISG법에 의한 금속과 세라믹기판과의 밀착력 향상)

  • 김동규;이홍로;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.709-716
    • /
    • 1999
  • Ceramic is select for an alternative substrate material for high-speed circuits due to its low-thermal expansion. As, in this study, ceramic was prepared by ISG (interlayer sol-gel) process using metal salts and a metal alkoxide as the starting materials. Generally ceramic substrate is used electroless copper plating for the metallization. But it has been indicate weakely the adhesion strength between the substrate and copper layer. Therefore, this research, using the ISG process on the preparation of homogeneous and possible preparation at law temperature fabricated sol solution. Using of the dip coating method was coated for the purpose of giving the anchoring effect on the coating layer and enhancing the adhesion strength between the $Al_2$O$_3$ substrate and copper layer. This study examined primary the characteristic of the sol making condition and differential thermal analysis (DTA) X-ray diffraction (XRD) were mearsured to identify the crystal phase of heat treatment specimens. The morphology of the coated films were studied by scanning electron microscopy(SEM). As a resurt, XRD analysis was obtained patterns of $\alpha$-cordierite after heat-treatment about 2 hours at $1000^{\circ}C$. SEM analysis could have seen a large number of voids on coated film. The more contants of$ Al_2$$O_3$ Wt% was increased the more voids was advanced. Peel adhesion strength has a maximum in the contants of the TEOS:ANE of 1:0.7 mole%. In this case, adhesion strength has been measured 1150gf, peel adhesion strength were about 10 times more than uncoated of the ceramics film.

  • PDF

Change of Phase Transformation and Microstructure of Alumina Membrane: I. Effect by Porosity of Support (알루미나 여과막의 상전이와 미세구조 변화: I. 지지체의 기공율에 의한 영향)

  • Cheong, Hun;Hwang, Kwang-Taek;Choi, Duck-Kyun;Cheong, Deock-Soo
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.205-210
    • /
    • 2002
  • The HPS(High Porosity Support, 39.3%) and the LPS( Low Porosity Support, 18.7%) were fabricated to investigate the phase transformation and the chance of microstructure with porosity of alumina support. Alumina sol was made using aluminum tri-sec $butoxide(ATSB,\; Al(O-Bu)_3)$, the membrane on porous support with different porosity and the membrane without support were fabricated. The $\theta$-to ${\alpha}-A1_2O_3$ phase transformation in the membranes was investigated using thin film X-ray diffraction (XRD), and the change of microstructure was observed using scanning electron microscopy(SEM). XRD patterns showed that the membrane on LPS and HPS had 10$0^{\circ}C$, 5$0^{\circ}C$ higher $\theta$-to ${\alpha}-A1_2O_3$ transformation temperature compared to the unsupported membrane. A similar effect was also observed in microstructure of the membranes, theoritical temperature difference were 97$^{\circ}C$ and 44$^{\circ}C$ by Crapeyron equation.

$In_2O_3$ Thin Film Ozone Sensor Prepared by Sol-Gel Method (졸-겔법을 이용한 $In_2O_3$ 박막의 오존 센서)

  • Lee, Yun-Su;Song, Kap-Duk;Choi, Nak-Jin;Joo, Byung-Su;Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • A highly selective, sensitive and reliable ozone sensing $In_2O_3$ thin film was fabricated by a sol-gel method. The fabricated film is operated at a relatively lower temperature than ever developed thin films and saved operating power. $In_2O_3$ films deposited by sol-gel technique has been recently attracted because it is an economical and energy saving method and precisely controlled microstructure. Indium alkoxide precursor was synthesized from the reaction between indium hydroxide and butanol. PVA binder was used to improve adhesion of the films. The $In_2O_3$ thin films were obtained by spin coating from 1 to 5 times followed by drying at $100^{\circ}C$ and calcining at $600^{\circ}C$ for 1h. The film thickness was controlled by the number of coating time. The morphology and the thickness of the $In_2O_3$ films were examined by a SEM and XRD. The $In_2O_3$ thin films show a high sensitive to ozone gas at operating temperature of $250^{\circ}C$. The $In_2O_3$ sensor has very good selectivity to $CH_4$, CO, $C_4H_{10}$ and ethanol.

  • PDF

Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin;Kim, Chul Ki;Kim, Hak Yong;Seo, Min Kang;Park, Soo Jin
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.

Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique (스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구)

  • Kim, Il-Jin;Han, Sang-Do;Lee, Hi-Deok;Wang, Jin-Suk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

Electronic Structure of Ce-doped ZrO2 Film: Study of DFT Calculation and Photoelectron Spectroscopy

  • Jeong, Kwang Sik;Song, Jinho;Lim, Donghyuck;Kim, Hyungsub;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • In this study, we evaluated the change of electronic structure during redox process in cerium-doped $ZrO_2$ grown by sol gel method. By sol-gel method, we could obtain cerium-doped $ZrO_2$ in high oxygen partial pressure and low temperature. After post annealing process in nitrogen ambient, the film is deoxidized. We used spectroscopic and theoretical methods to analysis change of electronic structure. X-ray absorption spectroscopy (XAS) for O K1-edge and Density Functional Theory (DFT) calculation using VASP code were performed to verify the electronic structure of the film. Also, high resolution x-ray photoelectron spectroscopy (HRXPS) for Ce 3d was carried out to confirm chemical bond of cerium doped $ZrO_2$. Through the investigation of the electronic structure, we verified as followings. (1) During reduction process, binding energy of oxygen is increase. Simultaneously, oxidation state of cerium was change to 4+ to 3+. (2) Cerium 4+ and cerium 3+ states were generated at different energy level. (3) Absorption states in O K edge were mainly originated by Ce 4+ $f_0$ and Ce 3+, while occupied states in valance band were mainly originated from Ce 4+ $f_2$.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.

Fabrication of oxide buffer layers for coated conductors (MOD 공정에 의한 산화물 완충층 제조)

  • Km Young-Kuk;Yoo Jai-Moo;Ko Jae-Woong;Chung Kuk-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.37-40
    • /
    • 2006
  • Oxide buffer layers for YBCO coated conductors were fabricated using MOD processing and development of microstructure and texture were investigated. A $CeO_2$ buffer layers were formed on RABiTS tape. Acetate-based precursor solution was employed to synthesize the precursor solution. Subsequently, the precursor solution was stabilized and modified with triethanolamine. $CeO_2$ precursor gel film was coated and annealed in $Ar/H_2$ atmosphere at high temperature. An annealed $CeO_2$ film shows mixed orientation with high (001) texturing. It was shown that (111) texture of $CeO_2$ layers were enhanced by multiple coating. This degradation was attributed to development of microcracks in the multiply coated $CeO_2$ films. Also discussed are the synthesis and the characterization of $La_2Zr_2O_7$ (LZO) buffer layers on RABiTS tape. A biaxially textured LZO buffer layer was fabricated with MOD processing method using metal alkoxide based precursor solution. It was shown that the LZO film were epitaxially grown on RABiTS tape and crack-free & uniform surface was obtained after annealing in $Ar/H_2$ atmosphere.

Mössbauer Studied of Multiferroic Bi2/3La1/3FeO3 Nanoparticles (Multiferroic Bi2/3La1/3FeO3 나노입자의 Mössbauer 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • La substituted perovskite $BiFeO_3$ have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with Mossbauer spectroscopy, XRD, SEM, and TG-DTA. The crystal structure is found to be a rhombohedrally distorted perovskite structure with the lattice constant $\alpha=3.985{\AA}\;and\;\alpha=89.5^{\circ}.\;Bi_{2/3}La_{1/3}FeO_3$ powders that were annealed at and above $600^{\circ}C$ have a single-phase perovskite structure. However, powders annealed at $900^{\circ}C$ have a typical perovskite structure with small amount of $Bi_2O_3$ phase. The Neel temperature of $Bi_{2/3}La_{1/3}FeO_3$ is found to be $680\pm3K$. The isomer shift value at room temperature is found to be 0.27 mm/s relative to the Fe metal, which is consistent with high-spin $Fe^{3+}$ charge states. Debye temperature far$Bi_{2/3}La_{1/3}FeO_3$ is found to be $305\pm5K$. The average hyperfine field $H_{hf}(T)$ of the $Bi_{2/3}La_{1/3}FeO_3$, shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.42(T/T_N)^{3/2}-0.13(T/T_N)^{5/2}$ for $T/T_N<0.7$ indicative of spin-wave excitation.