Browse > Article
http://dx.doi.org/10.4283/JKMS.2006.16.1.028

Mössbauer Studied of Multiferroic Bi2/3La1/3FeO3 Nanoparticles  

Lee, Seung-Wha (Department of Electronic Engineering Chungju National University)
Abstract
La substituted perovskite $BiFeO_3$ have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with Mossbauer spectroscopy, XRD, SEM, and TG-DTA. The crystal structure is found to be a rhombohedrally distorted perovskite structure with the lattice constant $\alpha=3.985{\AA}\;and\;\alpha=89.5^{\circ}.\;Bi_{2/3}La_{1/3}FeO_3$ powders that were annealed at and above $600^{\circ}C$ have a single-phase perovskite structure. However, powders annealed at $900^{\circ}C$ have a typical perovskite structure with small amount of $Bi_2O_3$ phase. The Neel temperature of $Bi_{2/3}La_{1/3}FeO_3$ is found to be $680\pm3K$. The isomer shift value at room temperature is found to be 0.27 mm/s relative to the Fe metal, which is consistent with high-spin $Fe^{3+}$ charge states. Debye temperature far$Bi_{2/3}La_{1/3}FeO_3$ is found to be $305\pm5K$. The average hyperfine field $H_{hf}(T)$ of the $Bi_{2/3}La_{1/3}FeO_3$, shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.42(T/T_N)^{3/2}-0.13(T/T_N)^{5/2}$ for $T/T_N<0.7$ indicative of spin-wave excitation.
Keywords
Mossbauer spectroscopy; sol-gel method; debye temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. R. Palkar, J. John, and R. Pinto, Appl. Phys. Lett. 80, 1628(2002)   DOI   ScienceOn
2 K. Y. Yun, D. Ricinschi, M. Noda, M. Okuyama, and S. Nasu, J. of Kor. Phys. Soc. 46, 281 (2005)
3 B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 64114(2004)   DOI   ScienceOn
4 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and I R. Ramesh, Science 299, 1719(2003)   DOI   ScienceOn
5 S. Y. An, I. B. Shim, and C. S. Kim, J. Magn. Magn. Mater. 290-291, 1551(2005)   DOI   ScienceOn
6 T. Matsumura, R. Kanno, Y. lnaba, Y. Kawamoto, and M. Takano, J. Electrochemical Soc. 149, A1509(2002)   DOI   ScienceOn
7 S. Y. An, S. W. Lee, D. H. Choi, I. B. Shim, and C. S. Kim, Phys. Stat. Sol.(c) 1, 3310(2004)   DOI   ScienceOn
8 H. N. Ok, K. S. Back, E. C. Kim, and C. S. Kim, Phys. Rev. B 48, 3212(1993)   DOI   ScienceOn
9 C. Blaauw and F. van der Woude, J. Phys. C; Solid State Phys. 6, 1422(1973)   DOI   ScienceOn
10 J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 21 (2004)
11 C. S. Kim, S. Y. An, Y. R. Uhm, S. W. Lee, Y. B. Kim, and C. S. Kim, J. Appl. Phys. 83, 6929(1998)   DOI   ScienceOn
12 K. U. Kang, H. N. Oak, and C. S. Kim, J. Appl. Phys. 97, 10F102(2005)   DOI
13 S. W. Lee and C. S. Kim, J. of Magnetics 10, 84(2005)   DOI   ScienceOn
14 R. V. Pound and G. A. Debka Jr., Phys. Rev. Lett. 4, 274(1960)   DOI
15 P. Vaqueiro, M. P. Cosner-Lppez, and M. A. Lopez Quintela, J. Solid State Chem. 126, 161(1996)   DOI   ScienceOn