• Title/Summary/Keyword: Soil-remediation

Search Result 794, Processing Time 0.023 seconds

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil (방사성 오염 토양의 효율적 복원을 위한 처리기술 평가 연구)

  • Song, Jong Soon;Shin, Seung Su;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Soil can be contaminated by radioactive materials due to nuclide leakage following unexpected situations during the decommissioning of a nuclear power plant. Soil decontamination is necessary if contaminated land is to be reused for housing or industry. The present study classifies various soil remediation technologies into biological, physics/chemical and thermal treatment and analyzes their principles and treatment materials. Among these methods, this study selects technologies and categorizes the economics, applicability and technical characteristics of each technology into three levels of high, medium and low by weighting the various factors. Based on this analysis, the most applicable soil decontamination technology was identified.

Feasibility Study on Acid-enhanced Electrokintic Remediation of Zn and Ni-contaminated Soil (Zn와 Ni로 오염된 토양의 산을 이용한 전처리 및 산순환 동전기 정화의 타당성 연구)

  • Park, Sung-Woo;Cho, Jung-Min;Ryu, Byung-Gon;Kim, Kyung-Jo;Baek, Ki-Tae;Yang, Jung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.17-22
    • /
    • 2008
  • The feasibility of acid-enhanced electrokinetic remediation on zinc and nickel-contaminated soil was investigated in the laboratory. Simple extraction efficiency using 1M HCl was 24% for Zn and 9% for Ni, as a result, the acid washing is not effective to remove Zn and Ni from the soil. The effiencey of normal electrokinetic treatment during 28 days was less than simple soil washing. Catholyte circulation with a strong acid enhanced dramatically the removal of Zn and Ni and pretreatment of soil with acid increased more the removal. Based on the result, acid-enhanced electrokinetic remediation is effective to remove Zn and Ni from the contaminated soil.

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles (활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리)

  • LEE, Hyeonmin;JUNG, Jihyeun;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

A Study of Heavy Metal-Contaminated Soil Remediation with a EDTA and Boric acid Composite(II): Cd and Cr (EDTA와 붕산 혼합용출제를 이용한 중금속으로 오염된 토양의 처리에 관한 연구(II): 카드뮴 및 크롬)

  • Lee Jong-Yeol;Kim Yong-Soo;Kwon Young-Ho;Kong Sung-Ho;Park Shin-Young;Lee Chang-Hwan;Sung Hae-Ryun
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.8-14
    • /
    • 2004
  • To investigate the optimal operation factors in appling Soil Flushing Process, which use EDTA and boric acid composite as a flushing reagent, to the Cd(cadmium) and Cr(chromium) contaminated sites, Cd and Cr emediation rate was investigated at various experimental conditions; as EDTA concentration was increased from 0.001M to 0.1M, Cd remediation rate was increased from $73.2\%\;to\;98.5\%$; as boric acid concentration was increased from 0.001M to 0.1M, Cr remediation rate was increased from $59.2\%\;to\;99.0\%$. In the experiments using 0.005M of EDTA and 0.005M of boric acid composite as a flushing reagent at different pH regimes, Cd remediation rate was decreased from $92.4\%\;to;80.9\%$ as the pH was increased from 3 to 7. But Cr remediation rate was more effective ($70.4\%$) at pH 5 compared to the other pHs. Furthermore, at pH 5, Cd and Cr remediation rate was investigated at different molecular ratio of [EDTA]/[Boric aicd]; the optimized [EDTA]/[Boric acid] ratio was 0.01M/0.1M for Cd contaminated site and, as the concentration of boric acid was increased over 0.1M, Cr remediation rate was also increased. So the similar results were shown in the experiments using real contaminated soils which were sampled from a mining and a industrial area.

Current research trends for heavy metals of agricultural soils and crop uptake in Korea (우리나라 농경지 중금속 동태 및 작물흡수 연구동향)

  • Lee, Ji-Ho;Kim, Ji-Young;Go, Woo-Ri;Jeong, Eun-Jung;Kunhikrishnan, Anitha;Jung, Goo-Bok;Kim, Doo-Ho;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.75-95
    • /
    • 2012
  • BACKGROUND: Increase of heavy metals in agricultural ecosystem has become a social issue nationwide as it is related to public health. This review was performed to find out more systematic and integrated future researches on heavy metals using up to date articles published in the Korean journals related to agricultural environment. METHODS AND RESULTS: Researches on heavy metals in agricultural soils and plant uptake were categorized by the establishment of criteria, analytical methods, monitoring, management of source, characteristics and behavior in soil, plant uptake, bioavailability affecting physico -chemical properties in soil, risk assessment and soil remediation. In the early 1990s, the monitoring for heavy metals in soil has been widely performed. Accumulation of heavy metals in contaminated soil and availability to plants has also attracted interests to study the soil remediation using various physico-chemical methods. The phytoavailability and phytotoxicity of heavy metals have been mainly studied to assess the safety of agro-products using risk assessment techniques in the 2000s. CONCLUSION: Future direction of research on heavy metal in agricultural environment must be carried out by ensuring food safety and sustainability. A steady survey and proper management for polluted regions should be continued. Law and regulation must be modified systematically. Furthermore, studies should expand on mitigation of heavy metal uptake by crops and remediation of polluted fields.

Remediation of benzo[a]pyrene Contaminated Soil using Subcritical Water (아임계수를 이용한 토양 내 벤조[a]피렌 정화)

  • Shin, Moon-Su;Islam, Mohammad Nazrul;Jo, Young-Tae;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.13-17
    • /
    • 2014
  • Subcritical water acts like an organic solvent at elevated temperature in terms of its physicochemical properties. Taking into account this advantage, the remediation experiments of benzo[a]pyrene contaminated soil (8.45 mg/kg of initial concentration) were conducted using subcritical water extraction apparatus. The effect of operating factors on the removal efficiency was studied at the varying the conditions of the water temperature ranging $200{\sim}300^{\circ}C$, extraction time 30~90 min, and flow rate 0.3~2.0 mL/min. 12 g of benzo[a]pyrene contaminated soil was inserted into the extraction cell and placed into the reactor and then the subcritical water was driven through the cell. In this study, the removal efficiency of benzo[a]pyrene was increased from 55.1 to 98.1% when the temperature increased from 200 to $300^{\circ}C$. The removal efficiency was decreased from 97.0 to 77.0% when the flow rate increased from 0.3 to 2.0 mL/min, suggesting that the extraction is limited by intra-particle diffusion. The 30 min reaction time was determined as an effective treatment time at $250^{\circ}C$. Based on the results, the optimum condition for the remediation of benzo[a]pyrene contaminated soil was suggested to be $250^{\circ}C$, 30 min, and 0.3 mL/min.

A Study on Remediation Method of Diesel-Contaminated Railroad Soil using $TiO_2$-MMT ($TiO_2$-MMT를 이용한 디젤오염 철도토양의 개선방안에 관한 연구)

  • Yang, Young-Min;Huh, Hyun-Sue;Lee, Jae-Young;Lee, Cheul-Kyu;Jeon, Yu-Mi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2870-2874
    • /
    • 2011
  • Soil pollution around railroad has been occurred mainly by diesel and lubricant oil, which is difficult to treat due to high carbon number. In this study, we investigated the feasibility of inorganic-inorganic nanohybrid photo-catalyst for the remediation of diesel-contaminated railroad soil. Generally, the $TiO_2$ nanoparticle easily removes organic pollutants due to photo and natural clay of layer structure. Also, montmorillonite (MMT) have an excellent absorption property with organic component. So, we prepared $TiO_2$ pillared MMT nanohybrid photo-catalyst as a chemical oxidant through the integration of theses advantage. As a result, the removal efficiency of diesel was more than 45% at a laboratory-scale test with diesel concentration and the amount of $TiO_2$-MMT. In future, we will improve the removal efficiency of diesel to optimize experimental parameters and apply the field soil The remediation method using photo-catalyst can be used to clean up the railroad soil polluted with high concentration instead of common methods such as soil washing, bioremediation, etc..

  • PDF

Development of Performance Evaluation Model for Optimal Soil Remediation Technology Selection (토양오염 최적정화기술 선정을 위한 성능평가모델 개발)

  • Kim, Sang-Tae;Koh, Woo-Chan;Lee, Seung-Woo;Kim, Heung-Rae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, we have developed the performance evaluation model for the optimal soil remediation technology selection. Performance evaluation model is composed in the evaluation of two steps. In the first stage, the candidate technologies are derived according to the conditions of drilling, type and concentration of pollutants, and the saturated/unsaturated of target site. In the second stage, each individual candidate technology is evaluated by performance evaluation model. The performance evaluation model has 5 groups of evaluation items and 12 evaluation items which have their own evaluation index and their own weights through the AHP approach surveying 40 experts. From the case study of actual design cases, the applicability of the performance evaluation model was confirmed.