• 제목/요약/키워드: Soil-foundation-structure interaction

검색결과 201건 처리시간 0.028초

경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석 (Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method)

  • 이은행;김재민;이상훈
    • 한국지진공학회논문집
    • /
    • 제19권1호
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.

Analysis of circular tank foundation on multi-layered soil subject to combined vertical and lateral loads

  • Hesham F. Elhuni;Bipin K. Gupta;Dipanjan Basu
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.553-566
    • /
    • 2023
  • A circular tank foundation resting on the ground and subjected to axisymmetric horizontal and vertical loads and moments is analyzed using the variational principles of mechanics. The circular foundation is assumed to behave as a Kirchhoff plate with in-plane and transverse displacements. The soil beneath the foundation is assumed to be a multi-layered continuum in which the horizontal and vertical displacements are expressed as products of separable functions. The differential equations of plate and soil displacements are obtained by minimizing the total potential energy of the plate-soil system and are solved using the finite element and finite difference methods following an iterative algorithm. Comparisons with the results of equivalent two-dimensional finite element analysis and other researchers establish the accuracy of the method.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Simplified Numerical Load-transfer Finite Element Modelling of Tunnelling Effects on Piles

  • Nip, Koon Lok (Stephen);Pelecanos, Loizos
    • 자연, 터널 그리고 지하공간
    • /
    • 제21권2호
    • /
    • pp.117-129
    • /
    • 2019
  • Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.

단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델 (S.D.O.F Macro-element for Interaction of Deep Foundation)

  • 나창순
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.347-355
    • /
    • 2008
  • 본 연구에서는 수평하중을 받는 깊은 기초에서 나타나는 지반과 기초의 상호작용을 분석할 목적으로 전통적인 소성이론을 응용하여 개발한 단자유도의 매크로요소 모델을 제시하였다. 제시한 매크로요소 모델은 지반에 매립된 깊은 기초가 수평하중을 받을 때 지반과 기초사이에 발생하는 응력의 제 성분을 각각 모델링하고 합성함으로써 구성하였는데, 이는 기초와 지반의 상호작용을 단순 스프링으로 모델링하는 기존의 방법에 비해 상호작용에 관련한 응력을 성분별로 분리하여 제공하는 장점이 있다. 본 연구에서는 상호작용과 관련한 응력의 제 요소를 마찰력과 측압저항으로 크게 분류하고 각 요소를 소성이론을 이용하여 모델링하였으며, 최종적으로 이들을 병렬로 조합하는 방식으로 매크로요소를 구성하였다. 제시한 매크로요소를 이용하여 점성토에 매립한 깊은 기초가 수평하중을 받는 경우를 해석한 결과 기초의 전체적인 거동과 더불어 상호작용 매크로요소를 구성하는 각 요소들로부터 상호작용 음력의 제 요소들을 분석해 냄으로써 기존 모델에 비해 개선된 결과를 얻을 수 있었다.

해상풍력 석션버켓 기초 구조-지반 상호작용 비선형 구조해석 및 실험결과 비교 (Nonlinear Structure-Soil Interaction Analysis for the Suction Bucket Foundation of Offshore Wind-Turbine)

  • 진정인;김동현;정민욱
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.469-475
    • /
    • 2016
  • 최근 석유 에너지 고갈의 문제에 봉착함에 따라 신재생 에너지, 즉 풍력 에너지 분야에 대한 연구가 자연스럽게 부각되고 있다. 그 중 해상풍력은 육상풍력에 비교해 바람 자원이 풍부하기 때문에 효율성 측면에서 주목 받고 있지만 전체 시스템의 설치비용에 따른 경제성이 중요한 문제가 되고 있다. 일반적으로 해상 풍력 사업의 구성비에서 지지구조물 설치비용의 비율이 통상 25% 이상을 차지하는 경향이 있으며, 설계된 지지구조에 대해 정확한 해석과 분석이 가능 하다면 설치 및 시공분야의 경제성을 확보하는데 중요한 역할을 할 수 있다. 본 연구에서는 해상 부유식 풍력발전시스템의 경제성 확보에 중요한 역할을 할 수 있는 석션버켓 기초의 지반연성 비선형 구조해석 기법을 구축하고 이에 대한 검증을 위해 실험결과와 비교검증을 수행하였다.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Effect of static and dynamic impedance functions on the parametric analysis of SSI system

  • Maroua Lagaguine;Badreddine Sbarta
    • Coupled systems mechanics
    • /
    • 제13권4호
    • /
    • pp.293-310
    • /
    • 2024
  • This paper investigates the dynamic response of structures during earthquakes and provides a clear understanding of soil-structure interaction phenomena. It analyses various parameters, comprising ground shear wave velocity and structure properties. The effect of soil impedance function form on the structural response of the system through the use of springs and dashpots with two frequency cases: independent and dependent frequencies. The superstructure and the ground were modeled linearly. Using the substructure method, two different approaches are used in this study. The first is an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. The second is a numerical analysis generated with 2D finite element modeling using ABAQUS software. The superstructure is represented as a SDOF system in all the SSI models assessed. This analysis establishes the key parameters affecting the soil-structure interaction and their effects. The different results obtained from the analysis are compared for each studied case (frequency-independent and frequency-dependent impedance functions). The achieved results confirm the sensitivity of buildings to soil-structure interaction and highlight the various factors and effects, such as soil and structure properties, specifically the shear wave velocity, the height and mass of the structure. Excitation frequency, and the foundation anchoring height, also has a significant impact on the fundamental parameters and the response of the coupled system at the same time. On the other hand, it have been demonstrated that the impedance function forms play a critical role in the accurate evaluation of structural behavior during seismic excitation. As a result, the evaluation of SSI effects on structural response must take into account the dynamic properties of the structure and soil accordingly.

동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성 (Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures)

  • 이세현;김동수;추연욱;박홍근;김동관
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험 (Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness)

  • 이성경;민경원
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.217-225
    • /
    • 2007
  • 본 연구에서는 건물모델만을 물리적인 실험체로 이용하여 동적 지반강성을 갖는 지반-구조물계의 동적거동을 모사하기 위한 하이브리드 진동대 실험법을 제안하고 이를 실험적으로 검증하였다. 본 연구에서 제안되는 실험방법은 상부구조물과 진동대의 가속도를 계측하여 진동대 제어기로 피드백하고, 전체 지반-구조물계의 동적거동을 묘사하기 위해 요구되는 기초부분의 절대가속도 응답(가속도 피드백 방법) 또는 절대속도 응답(속도 피드백 방법)을 계산하여 진동대를 구동시키는 방법이다. 지반부분을 계산하기 위해서 이론적인 동적지반강성을 제안방법에 따라서 다르게 근사화하여 진동대 제어기에 반영함으로써 실험을 수행하였다. 기초 고정계 모델에 대한 실험으로부터 계측된 응답과 본 논문에서 가정한 지반-구조물 계에 대한 실험으로부터 측정된 응답을 비교하고, 진동대 제어기에 반영한 동적지반강성과 실험데이터를 이용하여 식별된 동적지반강성을 비교함으로써 본 논문에서 제안된 실험방법의 유효성을 검증하였다.