DOI QR코드

DOI QR Code

Effect of static and dynamic impedance functions on the parametric analysis of SSI system

  • Received : 2022.07.17
  • Accepted : 2024.06.04
  • Published : 2024.08.25

Abstract

This paper investigates the dynamic response of structures during earthquakes and provides a clear understanding of soil-structure interaction phenomena. It analyses various parameters, comprising ground shear wave velocity and structure properties. The effect of soil impedance function form on the structural response of the system through the use of springs and dashpots with two frequency cases: independent and dependent frequencies. The superstructure and the ground were modeled linearly. Using the substructure method, two different approaches are used in this study. The first is an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. The second is a numerical analysis generated with 2D finite element modeling using ABAQUS software. The superstructure is represented as a SDOF system in all the SSI models assessed. This analysis establishes the key parameters affecting the soil-structure interaction and their effects. The different results obtained from the analysis are compared for each studied case (frequency-independent and frequency-dependent impedance functions). The achieved results confirm the sensitivity of buildings to soil-structure interaction and highlight the various factors and effects, such as soil and structure properties, specifically the shear wave velocity, the height and mass of the structure. Excitation frequency, and the foundation anchoring height, also has a significant impact on the fundamental parameters and the response of the coupled system at the same time. On the other hand, it have been demonstrated that the impedance function forms play a critical role in the accurate evaluation of structural behavior during seismic excitation. As a result, the evaluation of SSI effects on structural response must take into account the dynamic properties of the structure and soil accordingly.

Keywords

References

  1. Abate, G. and Massimino, M.R. (2017), "Parametric analysis of the seismic response of coupled tunnel-soil-aboveground building systems by numerical modelling", Bull. Earthq. Eng., 15(1), 443-467. https://doi.org/10.1007/s10518-016-9975-7. 
  2. Abdeddaim, M., Djerouni, S., Ounis, A., Athamnia, B. and Noroozinejad Farsangi, E. (2022), "Optimal design of Magnetorheological damper for seismic response reduction of Base-Isolated structures considering Soil-Structure interaction", Struct., 38, 733-752. https://doi.org/10.1016/j.istruc.2022.02.039. 
  3. Abdel Raheem, S.E., Ahmed, M.M. and Alazrak, T.M.A. (2015), "Evaluation of soil-foundation-structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations", Int. J. Adv. Struct. Eng., 7(1), 11-30. https://doi.org/10.1007/s40091-014-0078-x. 
  4. Ahmad, S. and Rupani, A.K. (1999), "Horizontal impedance of square foundation in layered soil", Soil Dyn. Earthq. Eng., 18(1), 59-69. https://doi.org/10.1016/S0267-7261(98)00028-1. 
  5. Belkhir, H., Sbartai, B., Filali, K. and Messioud, S. (2022), "Linear equivalent seismic response of a surface foundation excited by an SH harmonic wave", Eur. J. Environ. Civil Eng., 27(13), 3881-3898.  https://doi.org/10.1080/19648189.2022.2162978
  6. Betti, R., Abdel-Ghaffar, A.M. and Niazy, A.S. (1993), "Kinematic soil-structure interaction for long-span cable-supported bridges", Earthq. Eng. Struct. Dyn., 22(5), 415-430. https://doi.org/10.1002/eqe.4290220505. 
  7. Bolisetti, C. (2015), "Site response, soil-structure interaction and structure-soil-structure interaction for performance assessment of buildings and nuclear structures", ProQuest Dissertations and Theses, Cmmi, 446. 
  8. Celebi, E., Goktepe, F. and Karahan, N. (2012), "Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction", Nat. Hazard. Earth Syst. Sci., 12(11), 3495-3505. https://doi.org/10.5194/nhess-12-3495-2012. 
  9. Chaker, K., Moussaoui, A. and Sbartai, B. (2018), "µ-Synthesis control of a seismic excited building", Facing the Challenges in Structural Engineering: Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures, 1, 72-82. https://doi.org/10.1007/978-3-319-61914-9. 
  10. Chaker, K., Moussaoui, A.K. and Sbartai, B. (2017), "µ-Synthesis control applied to counter the seismic load action on a building structure", Int. Rev. Auto. Control, 10(1), 92-99.  https://doi.org/10.15866/ireaco.v10i1.10617
  11. Chaker, K., Sbartai, B. and Farsangi, E.N. (2024), "Control of a seismically excited building using µ-synthesis", MATEC Web Conf., 394, 03003. https://doi.org/10.1051/matecconf/202439403003.
  12. Chen, S.S. and Shi, J.Y. (2013), "A simplified model for coupled horizontal and rocking vibrations of embedded foundations", Soil Dyn. Earthq. Eng., 48, 209-219. https://doi.org/10.1016/j.soildyn.2013.01.018. 
  13. Crouse, C.B. and McGuire, J. (2001), "Energy dissipation in soil-structure interaction", Earthq. Spectra, 17(2), 235-259. https://doi.org/10.1193/1.1586174. 
  14. Far, H. and Flint, D. (2017), "Significance of using isolated footing technique for residential construction on expansive soils", Front. Struct. Civil Eng., 11(1), 123-129. https://doi.org/10.1007/s11709-016-0372-8. 
  15. Farghaly, A.A. and Ahmed, H.H. (2013), "Contribution of soil-structure interaction to seismic response of buildings", KSCE J. Civil Eng., 17(5), 959-971. https://doi.org/10.1007/s12205-013-0261-9. 
  16. Fay, D.L. (2010), Earthquake Engineering in Europe, Eds. Garevski, M. and Ansal, A., Angewandte Chemie International Edition. 
  17. Forcellini, D., Mina, D. and Karampour, H. (2022), "The role of soil structure interaction in the fragility assessment of HP/HT unburied subsea pipelines", J. Marine Sci. Eng., 10(1), 110. https://doi.org/10.3390/jmse10010110. 
  18. Gao, Z., Zhao, M., Du, X. and Zhao, X. (2020), "Seismic soil-structure interaction analysis of structure with shallow foundation using response spectrum method", Bull. Earthq. Eng., 18(8), 3517-3543. https://doi.org/10.1007/s10518-020-00827-x. 
  19. Guellil, M.E., Harichane, Z. and C elebi, E. (2020), "Seismic codes based equivalent nonlinear and stochastic soil structure interaction analysis", Studia Geotechnica et Mechanica, 43(1), 1-14. https://doi.org/10.2478/sgem-2020-0007. 
  20. Guellil, M.E., Harichane, Z., Berkane, H.D. and Sadouki, A. (2017), "Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response", Earthq. Struct., 12(2), 153-163. https://doi.org/10.12989/eas.2017.12.2.153. 
  21. Harichane, Z., Guellil, M.E. and Gadouri, H. (2018), "Benefits of probabilistic soil-Foundation-Structure interaction analysis", Int. J. Geotech. Earthq. Eng., 9(1), 42-64. https://doi.org/10.4018/IJGEE.2018010103. 
  22. Jaya, K.P. and Meher Prasad, A. (2002), "Embedded foundation in layered soil under dynamic excitations", Soil Dyn. Earthq. Eng., 22(6), 485-498. https://doi.org/10.1016/S0267-7261(02)00032-5. 
  23. Karabork, T., Deneme, I.O. and Bilgehan, R.P. (2014), "A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil", Geomech. Eng., 7(1), 87-103. https://doi.org/10.12989/gae.2014.7.1.087. 
  24. Karapetrou, S.T., Fotopoulou, S.D. and Pitilakis, K.D. (2015), "Seismic vulnerability assessment of high-rise non-ductile RC buildings considering soil-structure interaction effects", Soil Dyn. Earthq. Eng., 73, 42-57. https://doi.org/10.1016/j.soildyn.2015.02.016. 
  25. Karatzetzou, A. and Pitilakis, D. (2018), "Modification of dynamic foundation response due to soil-structure interaction", J. Earthq. Eng., 22(5), 861-880. https://doi.org/10.1080/13632469.2016.1264335. 
  26. Lagaguine, M. and Sbartai, B. (2023), "Seismic equivalent linear response of a structure by considering soilstructure interaction: Analytical and numerical analysis", Struct. Eng. Mech., 87(2), 173-189. https://doi.org/10.12989/sem.2023.87.2.173. 
  27. Lesgidis, N., Sextos, A. and Kwon, O.S. (2017), "Influence of frequency-dependent soil-structure interaction on the fragility of R/C bridges", Earthq. Eng. Struct. Dyn., 46(1), 139-158. https://doi.org/10.1002/eqe.2778. 
  28. Lin, C.C., Wang, J.F. and Tsai, C.H. (2008), "Dynamic parameter identification for irregular buildings considering soil-structure interaction effects", Earthq. Spectra, 24(3), 641-666. https://doi.org/10.1193/1.2946439. 
  29. Maheshwari, B.K. and Sarkar, R. (2011), "Seismic behavior of soil-pile-structure interaction in liquefiable soils: parametric study", Int. J. Geomech., 11(4), 335-347. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000087. 
  30. Massimino, M.R, Abate, G., Corsico, S. and Louarn, R. (2019), "Comparison between two approaches for non-linear FEM modelling of the seismic behaviour of a coupled soil-structure system", Geotech. Geolog. Eng., 37(3), 1957-1975. https://doi.org/10.1007/s10706-018-0737-y. 
  31. Massimino, M.R., Abate, G., Grasso, S. and Pitilakis, D. (2019), "Some aspects of DSSI in the dynamic response of fully-coupled soil-structure systems", Riv. Ital. Geotec, 1(44), e70. https://doi.org/10.19199/2019.1.0557-1405.044. 
  32. Moghaddasi, M., Cubrinovski, M., Chase, J.G., Pampanin, S. and Carr, A. (2011), "Effects of soil-foundation-structure interaction on seismic structural response via robust Monte Carlo simulation", Eng. Struct., 33(4), 1338-1347. https://doi.org/10.1016/j.engstruct.2011.01.011. 
  33. Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: Beneficial or detrimental?", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372. 
  34. Pais, A., Kausel, E. and Eirgirreerirlg, C. (1988), "Approximate formulas for dynamic stiffnesses of rigid foundations", Soil Dyn. Earthq. Eng., 7, 213-227.  https://doi.org/10.1016/S0267-7261(88)80005-8
  35. Rajeev, P. and Tesfamariam, S. (2012), "Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction", Soil Dyn. Earthq. Eng., 40, 78-86. https://doi.org/10.1016/j.soildyn.2012.04.008. 
  36. Raychowdhury, P. (2009), "Effect of soil parameter uncertainty on seismic demand of low-rise steel buildings on dense silty sand", Soil Dyn. Earthq. Eng., 29(10), 1367-1378. https://doi.org/10.1016/j.soildyn.2009.03.004. 
  37. Renzi, S., Madiai, C. and Vannucchi, G. (2013), "A simplified empirical method for assessing seismic soilstructure interaction effects on ordinary shear-type buildings", Soil Dyn. Earthq. Eng., 55, 100-107. https://doi.org/10.1016/j.soildyn.2013.09.012. 
  38. Rovithis, E., Kirtas, E., Bliziotis, D., Maltezos, E., Pitilakis, D., Makra, K., Savvaidis, A., Karakostas, C. and Lekidis, V. (2017), "A LiDAR-aided urban-scale assessment of soil-structure interaction effects: the case of Kalochori residential area (N. Greece)", Bull. Earthq. Eng., 15(11), 4821-4850. https://doi.org/10.1007/s10518-017-0155-1. 
  39. Saitoh, M. (2007), "Simple model of frequency-dependent impedance functions in soil-structure interaction using frequency-independent elements", J. Eng. Mech., 133(10), 1101-1114. https://doi.org/10.1061/(asce)0733-9399(2007)133:10(1101). 
  40. Sbartai, B. (2018), "Dynamic impedance functions of a square foundation estimated with an equivalent linear approach", Facing the Challenges in Structural Engineering: Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures 1, 460-470. 
  41. Sobhi, P. and Far, H. (2021), "Impact of structural pounding on structural behaviour of adjacent buildings considering dynamic soil-structure interaction", Bull. Earthq. Eng., 20(7), 3515-3547. https://doi.org/10.1007/s10518-021-01195-w. 
  42. Spyrakos, C.C., Maniatakis, C.A. and Koutromanos, I.A. (2009), "Soil-structure interaction effects on baseisolated buildings founded on soil stratum", Eng. Struct., 31(3), 729-737. https://doi.org/10.1016/j.engstruct.2008.10.012. 
  43. Veletsos, A.S. and Damodaran Nair, V.V. (1974), "Torsional vibration of viscoelastic foundations", ASCE J. Geotech. Eng. Div., 100(GT3), 225-246. https://doi.org/10.1061/ajgeb6.0000020. 
  44. Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. Dyn., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203. 
  45. Wen, Z.P., Hu, Y.X. and Chau, K.T. (2002), "Site effect on vulnerability of high-rise shear wall buildings under near and far field earthquakes", Soil Dyn. Earthq. Eng., 22(9-12), 1175-1182. https://doi.org/10.1016/S0267-7261(02)00145-8. 
  46. Wolf, J. (1985). Dynamic Soil-Structure Interaction, Prentice Hall, Inc. 
  47. Wolf, J.P. and Preisig, M. (2003), "Dynamic stiffness of foundation embedded in layered halfspace based on wave propagation in cones", Earthq. Eng. Struct. Dyn., 32(7), 1075-1098. https://doi.org/10.1002/eqe.263. 
  48. Worku, A. (2014), "Soil-structureinteraction provisions: A potential tool to consider for economical seismic design of buildings?", J. South Afr. Inst. Civil Eng., 56(1), 54-62. 
  49. Zhang, J. and Tang, Y. (2009), "Dimensional analysis of structures with translating and rocking foundations under near-fault ground motions", Soil Dyn. Earthq. Eng., 29(10), 1330-1346. https://doi.org/10.1016/j.soildyn.2009.04.002.