• 제목/요약/키워드: Soil stress

검색결과 1,843건 처리시간 0.029초

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF

섬유혼합토의 전단강도 특성 (Shear Strength Properties of Fiber Mixed Soil)

  • 차현주;최재원;이상호
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

역토내(壢土內)의 응력분포(應力分布)에 관(關)한 연구(硏究) (A Study on the Soil Stress Distribution in Furrow Slice)

  • 이기명;이석건;김태한
    • Journal of Biosystems Engineering
    • /
    • 제7권2호
    • /
    • pp.1-7
    • /
    • 1983
  • 경운시(耕耘時) 토양조건(土壤條件) 및 절삭조건(切削條件)에 따른 역토내의 응력분포(應力分布)를 파악(把握)한 목적(目的)으로 토양응력계(土壤應力計)를 시작(詩作)하여 소형토양조(小型土壤槽)을 사용(使用)한 실험(實驗)에서 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 가. 절삭조건(切削條件) 및 토양조건(土壤條件)은 주응력(主應力)의 방향(方向)에 영향(影響)을 미치지 않는다. 나. 절삭조건(切削條件)에 따른 주응력(主應力)의 크기는 경심(耕深)이 클수록 최대(最大) 주응력(主應力)이 증대(增大)하는 경향(傾向)이 있으나 절삭각(切削角)의 변화(變化)에는 그 영향(影響)이 나타나지 않았다. 다. 토양조건(土壤條件)에 따른 주응력(主應力)의 크기는 토양수분(土壤水分) 함량(含量)이 많아질수록, 점토분(粘土分)이 많을수록 최대(最大) 주응력(主應力)이 증대(增大)하는 경향(傾向)이 있다. 라. 전단면상(剪斷面上)에서의 응력분포(應力分布)는 모래 성분(成分)이 많은 토양(土壤)일수록 상층(上層)의 응력(應力)이 0에 접근(接近)하고 점토성분(粘土成分)이 많은 토양(土壤)일수록 상층(上層)의 응력(應力)이 증가(增加)하여 상하층(上下層)의 응력(應力)이 같아진다.

  • PDF

지반보의 응력분포에 관한 해석적 연구 (Analytical Study on Distribution of Stresses Induced in Soil Beam)

  • 이승현;김응석
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.5009-5014
    • /
    • 2015
  • 사질토 지반 위에 놓여 있는 점토지반에 대한 좁은굴착시 간극수압에 의한 융기현상이 발생할 수 있다. 간극수압에 의한 융기현상의 평가는 지반보를 고려해서 하게 되는데 좀 더 엄밀한 평가를 위해서는 지반보에 발생하는 응력분포의 결정이 필요하다. 본 연구에서는 탄성론에 근거하여 지반보에 발생하게 되는 응력분포와 변위분포 산정식을 제시하였다. 지반보의 자중에 의해 지반보내에 발생하는 응력분포를 5차 다항식으로 표현되는 응력함수로부터 유도하였는데 지반보의 깊이에 따른 연직응력의 분포는 포물선 분포를 나타내었으며 연직하향으로 작용함을 알 수 있었다. 단위중량이 $16kN/m^3이고 두께와 폭이 1m인 지반보인 경우 보의 내부에 발생하는 최대 연직응력의 크기는 1.7kPa 정도였다. 지반보 바닥면에 간극수압이 작용하는 경우의 응력분포를 자중에 의한 응력분포에 중첩시켜 구하였는데 지반보 자중의 5배에 해당하는 간극수압이 작용하는 경우 지반보의 깊이를 따라 곡선형태의 연직방향 압축응력분포를 나타내었다. 간극수압이 작용하는 경우에 대해 유도된 지반보의 응력분포로부터 변위분포를 유도하고 그 예측식을 제시하였다.

벼의 생육기별 수분결핍장애가 생육 및 수량에 미치는 영향 (Effect of Water Stress at Different Growth Stages on the Growth and Yield of the Transplanted Rice Plants)

  • 남상용;권용웅;권순국
    • 한국농공학회지
    • /
    • 제28권2호
    • /
    • pp.31-41
    • /
    • 1986
  • Knowledge of the degree of yield reduction due to water stress at different crop growth stages in rice production is important for rational scheduling of irrigation during periods of insufficient water supply. Previous studies to determine the degree of yield reduction duo to water stress suffered from interruptions by rain during experiment. Also the findings did rot relate the degree of water stress to the soil water potential and water deficit status of rice plants. In this study, two years experiments were conducted using the high yielding rice varieties, an Indica x Japonica (Nampoong) and a Japonica variety(Choochung). These were grown in 1/200$^{\circ}$ plastic pots placed under a rainfall autosensing, sliding clear plastic roof facility to control rainfall interruptions. The results obtained were as follows. 1.The two varieties differed in the growth stage most sensitive to water stress as well as the degree of yield reductions. When rice plants were stressed to the leaf rolling score 4 and soil water potential of about - 20 bar at major crop growth stages which included heading, booting, non-effective tillering, panicle initiation and early tillering stages, the yield reductions in the Indica x Japonica variety were 58%, 34%, 27%, 22%, and 21%, respectively, whereas in the Japonica vairety they were 23%, 36%, 1%, 13% and 22%, respectively. This result show that the recommended drainage during non-effective tillering is valid only for the Japonica variety. Sufficient irrigation at booting, heading and early tillering stages are necessary for both varieties. 2.The two varieties showed visible wilting symptoms when the soil water potential dropped to about - 3.0 bar. The Japonica variety showed more leaf rolling than the Indica X Japonica. However, it had a higher retention of leaf water content and greater stomatal diffusive resistance. When the soil water potential dropped, the Japonica variety showed leaf rolling score (LRS) 1 at 0 soil-5. 0 bar and LRS 2 at 0 soil -6.0 bar while the Indica X Japonica showed LRS 1 at 0 soil - 5.5 bar and LRS 2at 0 Soil - 9.0 bar. The stomatal diffusive resistance was maximum at the second top leaf blade in both varieties at intermediate water stress of 0 soil - 4.5 bar. 3.The number of days that was required for the soil water potential to drop to-3. 0 bar and to - 20.0 bar after drainage of irrigation water from the 20cm deep silty clay loam soil in the pots were 6 and 13 days, respectively for booting stage, and 7 and 11 days, respectively for heading stage, 9 and 12 days, respectively for panicle initiation stage, and 12 and 19 days, respectively for early tillering stage. 4.Water stress during the early tillering stage recorded the longest delay in beading time, the largest reduction in panicle numbers and a substantial yield decrease of 20%. This calls for better water management to ensure the availability of water at this stage, particularly during drought periods. In addition, a reexamination of the conventional inter-drainage practice during the non-effective tillering stage is necessary for the high yielding Indica X Japonica varieties.

  • PDF

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

𝛽-glucan 토양혼합에 따른 고구마의 가뭄피해 저감 효과 (The Effect of Soil Amended with β-glucan under Drought Stress in Ipomoea batatas L.)

  • 신정호;김현성;성관주;박원;안성주
    • Ecology and Resilient Infrastructure
    • /
    • 제10권3호
    • /
    • pp.64-72
    • /
    • 2023
  • 𝛽-glucan은 바이오폴리머 (biopolymer)의 한 종류로 식품 및 의약품 산업에 이용되고 있으며, 최근 친환경신소재로서 제방강화에 이용되거나 토양에 배합하여 식생을 보호하는 연구가 이루어지고 있다. 본 연구에서는 바이오폴리머 중 𝛽-glucan의 토양혼합 유무와 가뭄처리에 따른 괴근작물 고구마 (Ipomoea batatas L., 품종명 소담미)의 표현형, 생장, 그리고 주요 단백질의 발현 및 활성 변화를 분석하였다. 가뭄 스트레스 하에서 𝛽-glucan 토양혼합에 따른 고구마의 엽장 및 엽폭의 생장, 그리고 전해질유출도에서 큰 차이가 나타나지 않았으나. 상대수분함량은 통계적으로 유의성을 보여주었다. 가뭄스트레스 내성에 관여된 주요 원형질막 (plasma membrane, PM) 단백질의 발현과 활성을 분석하였을 때, 1차 능동수송체 PM H+-ATPase은 𝛽-glucan 토양혼합 조건과 가뭄스트레스에 하에서 상대적으로 높은 발현과 활성을 유지하였으나, 수분수송단백질 아쿠아포린 plasma membrane intrinsic protein 2 (PIP2)은 𝛽-glucan 토양혼합 조건과 가뭄스트레스에 의해 원형질막에서의 분포가 감소하였다. 이 결과는 𝛽-glucan의 토양혼합이 가뭄스트레스 하에서 토양수분 보유력을 향상시켜 고구마의 가뭄 스트레스와 관련된 원형질막 단백질들이 내성에 유리하게 발현됨을 보여준다. 결론적으로 이 연구는 바이오폴리머를 활용한 토양생태를 조절하는 기술로써 가뭄에 따른 식생의 생장 및 피해를 판단하는데 유효할 것이라 판단된다.

Use of plant growth-promoting rhizobacteria to control stress responses of plant roots

  • Kang, Bin-Goo;Kim, Woo-Taek;Yun, Hye-Sup;Chang, Soo-Chul
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.179-183
    • /
    • 2010
  • Ethylene is a key gaseous hormone that controls various physiological processes in plants including growth, senescence, fruit ripening, and responses to abiotic and biotic stresses. In spite of some of these positive effects, the gas usually inhibits plant growth. While chemical fertilizers help plants grow better by providing soil-limited nutrients such as nitrogen and phosphate, overusage often results in growth inhibition by soil contamination and subsequent stress responses in plants. Therefore, controlling ethylene production in plants becomes one of the attractive challenges to increase crop yields. Some soil bacteria among plant growth-promoting rhizobacteria (PGPRs) can stimulate plant growth even under stressful conditions by reducing ethylene levels in plants, hence the term "stress controllers" for these bacteria. Thus, manipulation of relevant genes or gene products might not only help clear polluted soil of contaminants but contribute to elevating the crop productivity. In this article, the beneficial soil bacteria and the mechanisms of reduced ethylene production in plants by stress controllers are discussed.

불포화 정성토의 체적변화에 대한 연구 (A Study on the Volume Change in Unsaturated Clayey Soil)

  • 장병욱;길상춘
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

로우터리 경운(耕耘)의 부하특성(負荷特性) 및 소요동력(所要動力)에 관(関)한 연구(硏究) (Tilling Load Characteristics and Power Requirement for Rotary Tillers)

  • 최규홍;류관희
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.27-36
    • /
    • 1984
  • This study was carried out to investigate the effects of the tilling depth, tilling travel speed and soil shear stress on the tilling load characteristics and power requirement for rotary tillers. The results obtained from the study are summarized as follows. 1. The average and maximum PTO torque increased as the tilling depth, tilling pitch and soil shear stress increased. A multiple linear regression equation to estimate the average PTO torque in terms of the above parameters was developed. 2. The ratios of maximum PTO torque to the average torque were in the range of 1.17 to 1.65 for the various tilling conditions tested. The variation in PTO torque increased greatly as the tilling pitch and soil shear stress increased, but decreased as the tilling depth increased. 3. Power requirement for the PTO shaft increased with the tilling depth, travel speed and soil shear stress, but decreased slightly as the tilling pitch increased. A multiple linear regression equation to estimate power requirement for the PTO shaft in terms of the above parameters was developed. 4. The specific power requirement for the rotary tiller was in the range of $0.008-0.015ps/cm^2$ for the various tilling conditons tested. The specific tilling capacity decreased as the tilling depth and soil shear stress increased, but increased with the tilling pitch. A multiple linear regression equation to estimate the specific tilling capacity in terms of the above parameters was developed.

  • PDF