• Title/Summary/Keyword: Soil remediation technology

Search Result 239, Processing Time 0.022 seconds

PERSPECTIVE AND TREND OF CURRENT RESEARCH ON GREEN REMEDIATION IN SOUTH KOREA

  • Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.117-124
    • /
    • 2010
  • In the field of soil and groundwater remediation, sustainability was merged into remediation process and green remediation was initiated within the concept of sustainable development. Green remediation was defined and has been already applied to the remediation fields in U.S. In the case of Europe, green remediation has been evaluated for the application of green technology in the remediation industry and they especially defined sustainable remediation following idea of sustainable development. Although green and sustainable remediation is global trends, there are only a few cases about application of green remediation in South Korea. It is needed to develop soil and groundwater remediation technology towards green remediation, considering "Green Growth" as policy direction in South Korea.

  • PDF

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Emerging Remediation Technologies for the Contaminated Soil/Groundwater in the Metal Mining Areas (금속광산지역 오염 토양/지하수의 복원기술 동향)

  • 김경웅
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.99-106
    • /
    • 2004
  • Pollution reduction and/or control technology becomes one of the pressing post-semiconductor research field to lead an advanced industrial structure. Soil/groundwater remediation techniques may act as a core technology which will create many demands on pollution reduction areas. A plenty numbers of abandoned metal mines were left without any remediation action in Korea, and it may be potential sources of heavy metal and As contamination in the ecosystem. In order to bring this soil contamination to a settlement, the emerging soil/groundwater remediation techniques should be introduced. Main research topics in the United States and Europe move towards the clean remediation technology without any secondary impact and the feasible application of developing technique into the field scale study. With these advantages, several soil/groundwater techniques such as electrokinetic soil processing, permeable reactive barrier, stabilization/solidification, biosorption, soil flushing with biosurfactant, bioleaching and phytoremediation will be summarized in this paper.

Status of Soil Remediation and Technology Development in Korea (국내 오염토양 복원 현황과 기술 동향)

  • Yang, Ji-Won;Lee, You-Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.311-318
    • /
    • 2007
  • Soil contamination in Korea has been accelerated every year. Because of their persistence and cumulative tendency in the environment, soil contaminants have potential long-term environmental and health concerns and it is estimated to cost enormous expense for clean-up. Korea government has legislated the law on conservation of soil environment in mid 1990s, and managed and treated hazardous wastes in contaminated sites as a remediation policy since then. Soil remediation technologies are classified into in-situ/ex-situ or biological/physico-chemical/thermal processes according to applied places or treatment methods, respectively. In Korea, clean-up of polluted sites has been mostly carried out at military areas, railroad-related sites and small-scale oil spilt sites. For these cases, in-situ remediation technologies such as soil vapor extraction (SVE) and bioventing were mainly used. In recent days, an environmental-friendly soil remediation emerged as a new concept - for example, a new soil remediation process using nanotechnology or molecular biological study and an integrated process which can overcome the limitation of individual process. To have better applicability of remediation technologies, comprehensive understandings about the pollutants and soil characteristics and the suitable techniques are required to be investigated. Above all, development of environmental technologies based on the sustainability accompanied by public attention can improve soil environment in Korea.

The Status of Soil and Groundwater Contamination in Japan and Case Studies of their Remediation (일본의 토양지하수오염 및 복원사례)

  • Komai, Takeshi;Kawabe, Yoshishige
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.25-39
    • /
    • 2003
  • Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk lev121 to individual person, especially from soil and groundwater environmental media. In this paper, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper, The most practical method for VOCs is the bio-remediation technique in which biological process due to consortium of microorganisms can be applied. For more effective remediation of soil contaminated by heavy metals we have adopted the soil flushing technique and clean-up system using electro-kinetic method. We have also developed the advanced techniques of geo-melting method for soil contaminated by DXNs and PCB compounds. These techniques are planed to introduce and to apply for a lot of contaminated sites in Japan.

  • PDF

Design Scheme to Develop Integrated Remediation Technology: Case Study of Integration of Soil Flushing and Pneumatic Fracturing for Metal Contaminated Soil (복합복원기술 개발을 위한 설계안 : 중금속 오염토양을 위한 토양세척과 토양파쇄의 통합 사례 연구)

  • Chung, Doug-Young;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • In remediation of the contaminated soil, it requires to select at least more than two remediation technologies depending on the fate and transport phenomena through complicated reactions in soil matrix. Therefore, methodologies related to develop the integrated remediation technology were reviewed for agricultural soils contaminated with heavy metals. Pneumatic fracturing is necessary to implement deficiency because soil washing is not effective to remove heavy metals in the subsurface soil. But it needs to evaluate the characteristics such as essential data and factors of designated technology in order to effectively apply them in the site. In the remediation site, the important soil physical and chemical factors to be considered are hydrology, porosity, soil texture and structure, types and concentrations of the contaminants, and fate and its transport properties. However, the integrated technology can be restrictive by advective flux in the area which remediation is highly effective although both soil washing and pneumatic fracturing were applied simultaneously in the site. Therefore, we need to understand flow pathways of the target contaminants in the subsurface soils, that includes kinetic desorption and flux, predictive simulation modeling, and complicated reaction in heterogenous soil.

Remedation of petroleum impacted filled land using of various in situ technology

  • 안훈기;김재형;고경연;서형기;임은진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.286-289
    • /
    • 2004
  • On site, In situ soil remediation technologies are very important among the remediation technologies and in general efficiency of these technologies are turned to site characterization and environmental condition. specially using of only one technology has so many limitation factors. for example, existing state of tailing and channeling and so on. actually, filled land have high concentration cation exchange capacity because of existence in abundance soil organic matter. Therefore we used various on site in Situ technologies by phase for overcome the limitation factors. Target site is petroleum (diesel) impacted filled land and using technologies are SVE(Soil Vapor Extraction), BV(Bioventing), Bioremediation, Soil flushing, Chemical oxidation.

  • PDF

Remediation of a Low Permeable Soil by Environmental Double Pile (환경이중파일 기법에 의한 저투수성 오염토양의 정화)

  • 박상규;이기호;박준범;임만빈
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.243-252
    • /
    • 2003
  • Environmental Double Pile method was presented as a device to improve low permeable contaminated soil. EDP is one of the latest technology in a concept of one step process that is applied to low permeable contaminated ground to reutilize the site by enhancing drainage, contaminated remediation, bearing capacity of piles. In order to evaluate on-site applicability of this technology, qualities of EDP's drainage, strength and remediation were assessed through a series of experiments; EDP was verified to achieve remediation and improvement of soft ground.

Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment (마이크로버블 오존 산화제와 공압파쇄 장치를 연계 적용한 지중 화학적 산화법의 정화효율 평가)

  • Oh, Seung-Taek;Oh, Cham-Teut;Kim, Guk-Jin;Seok, So-Hee;Kim, Chul-Kyung;Lim, Jin-Hwan;Ryu, Jae-Bong;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • A new type of chemical oxidation technology utilizing micro bubble ozone oxidizer and a pneumatic fracturing equipment was developed to enhance field applicability of a traditional chemical oxidation technology using hydrogen peroxide as an oxidizer for in-situ soil remediation. To find an efficient way to dissolve gaseous ozone into hydrogen peroxide, ozone was injected into water as micro bubble form then dissolved ozone concentration and its duration time were measured compared to those of simple aeration of gaseous ozone. As a result, dissolved ozone concentration in water increased by 31% (1.6 ppm ${\rightarrow}$ 2.1 ppm) and elapsed time for which maximum ozone concentration decreased by half lengthened from 9 min to 33 min. When the developed pneumatic fracturing technology was applied in sandy loam, cracks were developed and grown in soil for 5~30 seconds so that the radius of influence got longer by 71% from 392 cm to 671 cm. The remediation system using the micro bubble ozone oxidizer and the pneumatic fracturing equipment for field application was made and demonstrated its remediation efficiency at petroleum contaminated site. The system showed enhanced remediation capacity than the traditional chemical oxidation technology using hydrogen peroxide with reduced remediation time by about 33%.