• 제목/요약/키워드: Soil reactor

Search Result 142, Processing Time 0.025 seconds

Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese (망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거)

  • Yu, Mok-Ryun;Hong, Soon-Chul;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.

Isolation and Characterization of Sulfur-oxidizing Denitrifying Bacteria Utilizing Thiosulfate as an Electron Donor (황(thiosulfate)을 이용하는 탈질 미생물의 분리 및 특성 파악)

  • Oh, Sang-Eun;Joo, Jin-Ho;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Sulfur-oxidizing bacteria were enumerated and isolated from a steady-state anaerobic master culture reactor (MCR) operated for over six months under a semi-continuous mode and nitrate-limiting conditions using thiosulfate as an electron donor. Most are Gram-negative bacteria, which have sizes up to 12 m. Strains AD1 and AD2 were isolated from the plate count agar (PCA), and strains BD1 and BD2 from the solid thiosulfate/nitrate medium. Based on the morphological, physiological, FAME and 16S rDNA sequence analyses, the two dominant strains, AD1 and AD2, were identified as Paracoccus denitrificans and Paracoccus versutus (formerly Thiobacillus versutus), respectively. From the physiological results, glucose was assimilated by both strains AD1 and AD2. Heterotrophic growth of strains AD1 and AD2 could be a more efficient way of obtaining a greater amount of biomass for use as an inoculum. Even though facultative autotrophic bacteria grow under heterotrophic conditions, autotrophic denitrification would not be reduced.

Study on Characteristics of Biogas Production and Liquid Fertilizer with Anaerobic Co digestion of Livestock Manure and Food Waste (혐기성소화에서 가축분뇨와 음식물쓰레기의 혼용에 따른 바이오가스 생산 및 소화액의 액비 특성 연구)

  • Park, Woo-Kyun;Park, Noh-Back;Shin, Joung-Du;Hong, Seung-Gil;Kwon, Soon-Ik;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.895-902
    • /
    • 2011
  • Objective of this research was to investigate the characteristics of biogas production in anaerobic digestion reactor with different mixing ratio of food waste and swine manure. It was observed that the highest removal efficiency of organic material was 80% at 60 : 40 of mixing ratio (livestock manure : food waste). And also biogas yield was varied due to different mixing ratio of them. The cumulative biogas yield was highest at 60 : 40 of mixing rate (livestock manure : food waste). For use of the liquefied fertilizer as effluent from anaerobic digester, it was the limited ratio for 30% of co-digested food waste based on its salt content.

A Study on the Livestock Resources regarding on the Discharging Characteristics from Farm Land (농지 주입 시 배출특성에 대한 축분자원화물 연구)

  • Lim, Jai-Myug;Lee, Young-Sin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.91-102
    • /
    • 2009
  • In this study, to estimate the transforming (runoff and leachate) rate of the organic fertilizer made of livestock resources to farm land, laboratory scale test was conducted and the results were obtained as follows: The runoff volume from farm land showed the tendency of increase according to the increase of rainfall intensity. The most rainfall leachated into the underground at the rainfall intensity of 20mm/hr, and rainfall of 5L or less leachated at the rainfall intensity of > 32.4 mm/hr. This shows that surface runoff largely depends on the rainfall intensity when soil characteristic and hardness are similar in each site. When liquid compost was fertilized, the surface runoff was similar with the results from the reactor fertilized by compost, and leachate flow was found to be lower than compost. The runoff ratio of contaminant parameters from farm land were BOD 0.00003,, $COD_{cr}$ 0.00006, TN 0.00056, TP 0.00011, TOC 0.00005, Especially, the runoff ratio of TN showed 10 folds higher than other parameters. On the other hand, the runoff ratio of SS showed higher value of 0.001, and colloid particles of soil caused this result rather than the leachate from compost fertilizer. At all ranges of rainfall intensity, fertilizer removal ratio by farm land was found to be 94.9~98.4% for compost and 85.8~98.1% for liquid compost in terms of BOD. For TN, it resulted in 96.6~98.4% for compost and 97.2~98.5% for liquid compost, and thus the most fertilizer from livestock resources were shown to be reduced through farm land application.

A Study on Performance Evaluation for the Bio-retention Non-point Source Pollution Treatment System (생물 저류 방법 적용을 통한 비점오염원 처리시설의 성능평가에 관한 연구)

  • Lee, Jang-Soo;Park, Yeon-Soo;Cho, Wook-Sang
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This study was purposed and performed to evaluate removal efficiency of non-point source pollution in the process and system based on bio-retention design criteria regulated by EPA. Basic Column Reactors (BCR) were prepared for optimal determinations of inflow rate of first rainfall runoff and composition and ratio of soil layers. Removal efficiencies of non-point source pollution from synthetic runoff and real first rainfall runoff, directly sampled from motor way and parking lot, were analyzed, respectively. Removal efficiency of SS, BOD, COD, T-N, and T-P were all shown to be more than 80%.

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Intercomparison and Determination of Sediment by Instrumental Neutron Activation Analysis (중성자방사화분석을 이용한 퇴적물의 정량 및 비교연구)

  • 정용삼;문종화;정영주;박용준;이길용;윤윤열;이수형;김경태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.116-121
    • /
    • 1998
  • For the application of study on pollution and conservation of environment determination of 33 elemental concetrations in different sediment samples were carried out using instrumental neutron activation analysis (INAA). For verification and evaluation of the analytical method, three standard reference materials (two NIST SRMs and one NRCC CRM) were chosen and the accuracy and precision of the analysis were estimated by comparison to the certified values. Under the optimum condition, the analytical procedure to apply a practical sample was estimated. Neutron irradiation of sample was done at the irradiation facilities (neutron flux, 1-3${\times}$10$\^$13/n/$\textrm{cm}^2$$.$s) of the TRIGA MARK-III and HANARO research reactor in the Korea Atomic Energy Research Institute. In addition, analysis of two IAEA's sediment was performed according to the pre-established analytical method. The analytical results of elements such as Al, As, Co, Cr, Fe, Sb and Zn by INAA were intercompared with those of WD-XRF, ICP-MS and AAS, and are relatively agreed with each other.

  • PDF

Screening of Zero-Valent Metal for the Removal of High Concentration PCE and 1,1,1 TCA (고농도 PCE 및 1,1,1 TCA 제거를 위한 영가금속 선정)

  • Kwon, Soo-Youl;Kim, Young
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Chlorinated aliphatic hydrocarbons (CAHs) such as tetrachloroethylene (PCE), 1,1,1-trichloroethane (1,1,1-TCA) are the contaminants most frequently found in soil and groundwater. They have a potential to be toxic to and persistent in environment. This study is focused on selection of zero-valent metal and ores for the removal of high concentration PCE or 1,1,1-TCA and mixture of two compound. For the screening of suitable metals, we measured dechlorination rate, removal capacities and economics by using batch reactor test. This results suggest that removal rate and dechlorination of high quality iron and zinc are higher than slag and nature ores like zinc and manganese. Among nature ores, zinc ores(64% purity) have highest removal capacities. And in economics zinc ores is 10 times better than high quality metal tested. We conclude zinc ore is most suitable metal for the removal of PCE or 1,1,1-TCA.

Valuable Organic Liquid Fertilizer Manufacturing through $TAO^{TM}$ Process for Swine Manure Treatment

  • Lee, Myung-Gyu;Cha, Gi-Cheol
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2003
  • $TAO^{TM}$ System is an auto-heated thermophilic aerated digestion process using a proprietary microbe called as a Phototropic Bacteria (PTB). High metabolic activity results in heat generation, which enables to produce a pathogen-free and digested liquid fertilizer at short retention times. TAO$^{TM}$ system has been developed to reduce a manure volume and convert into the liquid fertilizer using swine manure since 1992. About 100 units have been installed and operated in Korean swine farms so far. TAO$^{TM}$ system consists of a reactor vessel and ejector-type aeration pumps and foam removers. The swine slurry manure enters into vessel with PTB and is mixed and aerated. The process is operated at detention times from 2 to 4 days and temperature of 55 to $65^{\circ}C$. Foams are occurred and broken down by foam removers to evaporate water contents. Generally, at least 30% of water content is evaporated, 99% of volatile fatty acids caused an odor are removed and pathogen destruction is excellent with fecal coliform, rotavirus and salmonella below detection limits. The effluent from TAO$^{TM}$ system, called as the "TAO EFFLUX", is screened and has superb properties as a fertilizer. Normally N-P-K contents of screened TAO Efflux are 4.7 g/L, 0.375 g/L and 2.8 g/L respectively. The fertilizer effect of TAO EFFLUX compared to chemical fertilizer has been demonstrated and studied with various crops such as rice, potato, cabbage, pumpkin, green pepper, parsley, cucumber and apple. Generally it has better fertilizer effects and excellent soil fertility improvement effects. Moreover, the TAO EFFLUX is concentrated through membrane technology without fouling problems for a cost saving of long distance transportation and a commercialization (crop nutrient commodity) to a gardening market, for example.

  • PDF

Feasibility of Natural Attenuation for TCE Anaerobic Reductive Dechlorination Using Microsized Corn-Oil Droplet as an Activator (Microsized Corn-Oil Droplet (MOD)의 Trichloroethylene (TCE) 생물학적 탈염소화 분해 자연저감 완효성 촉진제 적용성 평가)

  • Kyungjin Han;Huiyun Kim;Sooyoul Kwon;Young Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, enhanced in situ bioremediation using slow substrate release techniques has been actively researched for managing TCE-contaminated groundwater. This study conducted a lab-scale batch reactor experiment to evaluate the feasibility of natural attenuation for TCE dechlorination using microsized corn-oil droplet (MOD) as an activator considering the following three factors: 1) TCE dechlorination in the presence or absence of MOD; 2) TCE dechlorination in the presence or absence of inactivator of native microbial activity; and 3) MOD concentration effects on TCE dechlorination. Batch reactors were constructed using site groundwater and soil in which Dehalococcoides bacteria were present. Without MOD, TCE was decomposed into dichloroethylene (DCE). However, other by-products of TCE dechlorination were not detected. With MOD, DCE, vinyl chloride (VC), and ethylene (ETH) were sequentially observed. This result confirmed that MOD effectively supplied electrons to complete dechlorination of TCE to ETH. However, when an excess of MOD was provided, it formed unfavorable conditions for anaerobic digestion because dechlorination reaction did not proceed while propionic acid was accumulated after DCE was generated. Therefore, if an appropriate amount of MOD is supplied, MOD can be effectively used as a natural reduction activator to promote biodegradation in an aquifer contaminated by TCE.