• Title/Summary/Keyword: Soil problems

Search Result 1,178, Processing Time 0.033 seconds

A Study on Drainage Capacity of PBD Installed in Deep Soft Ground (대심도 연약지반에 적용되는 PBD의 통수능에 관한 연구)

  • Byun, Yo-Seph;Ahn, Byung-Je;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.67-76
    • /
    • 2009
  • The problems of bearing capacity, settlement and shear deformation occur when constructing a structure such as harbor, airport and bridge on soft ground of marine clay, silty clay or sandy soil. Various ground improvement methods are applied to obtain preceding settlement of soft ground and strength increase. In this study, to analyze the applicability of PBD method in deep soft ground, the compound drainage capacity test was operated in comparison with SD. As a result of the test, a minimum drainage capacity of drain material was estimated to be more than $10\;cm^3/sec$ at a more than $400\;kN/m^2$ and less than $5\;cm^3/sec$ at a more than $500\;kN/m^2$ confining pressure in case of single core PBD. In case of double core PBD, it was estimated to be more than $10\;cm^3/sec$ at a more than $500\;kN/m^2$ confining pressure.

A study on the crop switching of farmers in Jeju Islands related to the climate changes - focused on the citrus farms of the graduates of the KNCAF - (제주지역의 기후변화에 따른 농가의 작목전환 실태 -한농대 졸업생 감귤 농가를 중심으로-)

  • Kim, J.S.;Kang, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.163-179
    • /
    • 2015
  • The aim of this study is to investigate to which degree farmers did the crop switching and cultivar renewal as a confrontational strategy to climate change, and which problems they had in that process, and then to provide the supporting plans for them. We conducted a questionnaire survey of 15 citrus farmers of the KNCAP graduates in Jeju Island. Most of the survey respondents agreed to the climate change of Jeju Island and the subtropical climate of its coastal area. The farmers have experienced irregular weather such as abnormal high temperature, frequent rain, and droughts, resulting in the harmful insects and new weeds attack. As the climate change strategies, they are adopting a greenhouse culture system, improving a soil drainage using reorganization of planting space, making a new pest management program, and trying to switch a crop to subtropical fruits. It is expected that 50% of the survey respondents have changed their crops or will do; and 73 % of them have changed cultivar or have a plan to do. Only a few farmers directly pointed to a reason for their efforts to change the crops or to renew the cultivars as the anti-climate change strategy, however, most farmers answered the reason was to increase profitability by meeting their consumers' tastes. Presently, it is not the anti-climate change strategy but increase of profitability by meeting the consumers' needs the reason why most of the survey respondents have changed their crops or renewed the cultivars, while a few of them switched their crops to a subtropical fruit trees due to climate change. On the crop switching, they had some difficulties such as a labor shortage, availability of land, operating costs and instable income. On the cultivar renewal, also, they encountered the lack of cultivating techniques for new cultivars and the dim future for the new market. In long-term perspective, Jeju's farmers need new information and educational programs about the effect of climate change on agriculture of Jeju, and cultivation techniques for new crops and new cultivars.

An Analysis of the Rice Situation in Nicaragua for Improving National Production.

  • Chang-Min Lee;Oporta Juan;Ho-Ki Park;Hyun-Su Park;Jeonghwan Seo;Man-Kee Baek;Jae-Ryoung Park;O-Young Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.90-90
    • /
    • 2022
  • Nicaragua is located in Central America, climatic conditions are considered tropical dry forest. Statistics reflex that in Nicaragua exits 24,000 rice farmers. National rice production only covers 73% of the national consumption. It exists two sowing system: irrigation and rainfed. Varieties used in both systems are mid-late maturity (120-135 days), there are 14 released varieties for irrigation, eight for rainfed, and eight landraces used in rainfed. The current breeding system (introduction of lines from Colombia) has increased the national production, however, has some limitation due to the lack of enough variability, reducing the proability of finding good genotypes and therefore the possibility of satisfying 100% of the demand. The purpose of this study was to analyze the problems that must be resolved in the short and long term to improve rice productivity in Nicaragua. In this paper we explain some proposal for an improvement plan. The selection of varieties with high adaptability to various cultivation environmental conditions it is necessary, also to thoroughly manage seed purity to supply certified seeds. In rice cultivation technology, it needs to improve seedling standing and weeding effect by improving soil leveling and water-saving cultivation technology. Also, proper fertilization and planting density must be established in irrigated and rain-fed areas. Furthermore, capacity must be strengthened by collecting and training with the most recent agricultural technology information, as well as by revitalizing the union rather than the individual farmer. It is necessary to develop varieties highly adaptable to the Nicaraguan cultivation environment, as well as to expand irrigation facilities and cultivation technology suitable for weather conditions in rain-fed areas. Last, it is necessary to maintain the consistency of agricultural policy for continuous and stable rice production in response to climate change events such as drought or intermittent heavy rain.

  • PDF

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.

A Study of Development and Application of an Inland Water Body Training Dataset Using Sentinel-1 SAR Images in Korea (Sentinel-1 SAR 영상을 활용한 국내 내륙 수체 학습 데이터셋 구축 및 알고리즘 적용 연구)

  • Eu-Ru Lee;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1371-1388
    • /
    • 2023
  • Floods are becoming more severe and frequent due to global warming-induced climate change. Water disasters are rising in Korea due to severe rainfall and wet seasons. This makes preventive climate change measures and efficient water catastrophe responses crucial, and synthetic aperture radar satellite imagery can help. This research created 1,423 water body learning datasets for individual water body regions along the Han and Nakdong waterways to reflect domestic water body properties discovered by Sentinel-1 satellite radar imagery. We created a document with exact data annotation criteria for many situations. After the dataset was processed, U-Net, a deep learning model, analyzed water body detection results. The results from applying the learned model to water body locations not involved in the learning process were studied to validate soil water body monitoring on a national scale. The analysis showed that the created water body area detected water bodies accurately (F1-Score: 0.987, Intersection over Union [IoU]: 0.955). Other domestic water body regions not used for training and evaluation showed similar accuracy (F1-Score: 0.941, IoU: 0.89). Both outcomes showed that the computer accurately spotted water bodies in most areas, however tiny streams and gloomy areas had problems. This work should improve water resource change and disaster damage surveillance. Future studies will likely include more water body attribute datasets. Such databases could help manage and monitor water bodies nationwide and shed light on misclassified regions.

Seismic Impact Analysis of Buried Citygas Pipes through Structural Analysis (구조해석을 통한 도시가스 매설배관의 지진 영향 분석)

  • Yoon Ho Jo;Maria Choi;Ju An Yang;Sang Il Jeon;Ji Hoon Jeon
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • Earthquakes are one of the most important disasters affecting underground structures. Urban gas underground pipes may cause safety problems of structures in the event of an earthquake. Since Korea began digital observation, the number of earthquakes has been steadily increasing. The seismic design standard for urban gas pipes was established in 2008, but it is difficult to estimate the impact of pipes in the event of an earthquake based on the installation of pipes. In this study, structural analysis was performed on PE (polyethylene pipe) pipes and PLP (polyethylene coated steel pipe) pipes, which are mainly used as buried pipes in Korea, according to environmental and pipe variables in the event of an earthquake. This study sought to find the variables of the most vulnerable buried pipe by modeling pipes through Computer Aided Engineering (CAE) and generating displacement on the ground. Through this study, it was confirmed that the larger the elastic modulus of the soil, the deeper the buried depth, the smaller the tube diameter, and the higher the pressure, the more PLP pipes are affected by earthquakes than PE. Based on these results, the vulnerable points of buried urban gas pipes are inferred and used for special inspections of buried pipes in the event of an earthquake.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

Planting Plan for Improvement of Buffer Green Space Function in the Vicinity of Railroad in Seashore Reclaimed Land - A Case Study of Buffer Green Space, Ansan City - (해안 매립도시 완충녹지 조성현황과 기능향상을 위한 식재방안 - 안산시 완충녹지를 사례로 -)

  • Lee, Kyong-Jae;Han, Bong-Ho;Park, Hyun-Ae;Choi, Jin-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.691-706
    • /
    • 2008
  • This study analysed problems of railroadside buffer green space and suggested planting methods according to space function and planting concept in seashore reclaimed land, Ansan city. Planting density of railroadside buffer green zone of Ansan city was $0.04{\sim}0.17tree/m^2$, GVZ was $0.15{\sim}1.65m^3/m^2$ which is represented of deficiency of buffer function. In addition, soil hardness of mounded buffer green zone was $2.72{\sim}15kg/cm^2$. It was examined to have functions in terms of habitat for wildbirds and other organisms, surrounding landuse, urban greens, seasonality, landscape for function improvement of buffer green space. Functions of buffer green space were re-established as habitat for organism, buffer and landscape improvement, landscape and urban park, buffer zone and habitat. It was suggested to select Pinus thunbergii as a dominated species of planting method for buffer function and planting density in canopy and under-canopy layer was $0.4tree/m^2$, $0.5/m^2$ in shrub layer. In terms of landscape improvement function, Zelkova serrata, Prunus sargentii and Prunus armeniaca were selected as major species and it in canopy and under-canopy layer was $0.2tree/m^2$ and $0.5tree/m^2$ in shrub layer. In terms of habitat function Quercus acutissima, Prunus sargentii and Sorbus alnifolia were as major species and it in canopy layer was $0.06tree/m^2$, $0.1tree/m^2$ in under canopy layer, $0.8tree/m^2$ in shrub layer.