• Title/Summary/Keyword: Soil pH

Search Result 4,039, Processing Time 0.034 seconds

Transformation of Bottle Gourd Rootstock (Lagenaria siceraria Standl.) using GFP gene (GFP유전자를 이용한 대목용 박 형질전환)

  • Lim, Mi-Young;Park, Sang-Mi;Kwon, Jung-Hee;Han, Sang-Lyul;Shin, Yoon-Sup;Han, Jeung-Sul;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • Bottle gourd (Lagenaria siceraria Standl.) has been used as a rootstock for the watermelon cultivation because of better growth ability at low temperature and avoidance from contamination of the soil disease. Since the genetic source for the elite rootstock is limited in nature, the genetic engineering method is inevitable to develop new lines especially to obtain the functionally important or multi-disease resistant bottle gourd. Recently, our lab has set up a successful system to transform the bottle gourd. in order to monitor the transformation process, GFP gene is used. Cotyledons of the inbred line 9005, 9006 and G5 were used to induce the shoot under the selection media with MS + 30 g/L sucrose + 3.0 mg/L BAP + 100 mg/L kanamycin + 500 mg/L cefotaxime + 0.5 mg/L $AgNO_3$, pH 5.8. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. The shoot was incubated in the rooting media with 1/2 MS + 30 g/L sucrose + 0.1 mg/L IAA + 50 mg/L kanamycin + 500 mg/L cefotaxime, pH 5.8 and moved to pot for acclimation. Although the shoot development rate was depended on the genotype, the G5 was the best line to be transformed. Monitoring GFP expression from the young shoot under microscope could make the selection much easier to distinguish the transformed shoot from the non-transformed shoots.

Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field (논물 담수심이 온난화 가스 배출에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Jong-Gu;Park, Chan-Won;Shin, Yong-Kwang;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.150-156
    • /
    • 2005
  • The increasing emission of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. This study was conducted to investigate greenhouse gas emission with irrigation water depth in paddy field. Area of each experiment plot is $70m^2$, Three treatments with three replications were carried out in this experiment, which was laid out as randomized complete block design. The treatments of irrigation water were maximum field water capacity and 4 and 8 cm depth. The application rate of fresh rice straw was $8,000kg\;ha^{-1}$ in combination with chemical fertilizers ($110kg\;N\;ha^{-1}$, $45kg\;P_2O_5\;ha^{-1}$ and $57kg\;K_2O\;ha^{-1}$). The $CH_4$ emission was highest at 32 days after rice transplanting with rice straw treatment. The $CH_4$ emission in the plot of maximum field water capacity was lower compared with 4 and 8 cm of irrigation depth. $CH_4$ and $N_2O$ emission under different water depth in the paddy field were 30 and $1.52kg\;ha^{-1}$ at 8 cm depth, 281 and $1.71kg\;ha^{-1}$ at 4 cm depth, and 219 and $2.01kg\;ha^{-1}$ at water saturated condition. The total emission of greenhouse gases equivalent to $CO_2$ emission with rice straw application were $6,939kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $6,431kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $5,222kg\;CO_2\;ha^{-1}$ at water saturated condition. The GWPs without rice straw application were $4,449kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $3,702kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $4,579kg\;CO_2\;ha^{-1}$ at water saturated condition.

Hydrochemistry of Groundwater at Natural Mineral Water Plants in the Okcheon Metamorphic Belt (옥천계변성암 지역의 먹는샘물 지하수의 수리지구화학적 특성)

  • 추창오;성익환;조병욱;이병대;김통권
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.93-107
    • /
    • 1998
  • Because of its stable quantity and quality, groundwater has long been a reliable source of drinking water for domestic users. Rapid economic growth and rising standards of living have in recent years put severe demands on drinking water supplies in Korea. Groundwaters that are currently being used for natural mineral water were hydrochemically evaluated and investigated in order to maintain their quality to satisfy strict health standards. There exist 15 natural mineral water plants in the Okcheon metamorphic belt. Characteristics of groundwaters are different from those of other areas in that electrical conductivity, hardness, contents of Ca, Mg and $HCO_3$are relatively high. The content of major cations is in the order of Ca>Mg, Na>K, whereas that of major anions shows the order of $HCO_3$>$SO_4$>Cl>F. The fact that the Ca-Mg-HCO$_3$type is mostly predominant among water types reflects that dissolution of carbonates that are abundantly present in the metamorphic rocks plays an important part in groundwater chemistry. Representative correlation coefficients between chemical species show Mg-$HCO_3$(0.92), Ca-$HCO_3$(0.88), Ca-Mg(0.80), Ca-Cl(0.78), Mg-$SO_4$(0.78), Ca-$SO_4$(0.71), possibly due to the effect by dissolution of carbonates, gypsum or anhydrite. Determinative coefficients between some chemical species represent a good relationship, especially for EC-(K+Na+Ca), Ca-$HCO_3$, Ca-Mg, indiacting that they are similar in chemical behaviors. According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite and dolomite, whereas it is still greatly undersaturated with respect to gypsum, anhydrite and fluorite, Based on the Phase equilibrium in the systems $NA_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O and $K_2$O-$Al_2$$O_3$-$SiO_2$-$H_2$O, it is clear that groundwater is in equilibrium with kaolinite, evolved from the stability area of gibbsite during water-rock interaction. It is expected that chemical evolution of groundwater continue to proceed with increasing pH by reaction of feldspars, with calcite much less reactive.

  • PDF

Studies on the Petroleum hydrocarbon-utilizing Micro-organisms(Part 2) - On the Production of Single Cell Protein from Petroleum hydrocarbon with a yeast strain - (석유 탄화수소 이용 미생물에 관한 연구 (제 2 보) - 효모를 이용한 석유탄화수소로 부터 단백질 생산에 관하여 -)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.9-18
    • /
    • 1971
  • In order to obtain basic information on the production of single cell protein from petroleum, more than 400 yeast strains were isolated from various soil samples in Korea utilizing petroleum hydrocarbon as the sole carbon source. A yeast strain showing the highest cell yield among the isolated strains was selected and identified. The optimal culture condition was searched in the flasks shaken throughout the procedure. And the growing characteristics for the selected yeast strain and chemical analysis of the yeast cell component were carried out. The results obtained were as follows: 1. The selected yeast strain was identified as Candida curvata and we named it Candida curvata-SNU 70. 2. The composition of the medium proposed for the present yeast strain is: Light Gas Oil 30ml, Urea 400mg, Ammonium sulfate 100mg, Potasium phosphate (monobasic) 670mg, Sodium phosphate (dibasic) 330mg, Magnesium sulfate 500mg, Calcium carbonate 3g, Yeast extract 50mg, Tween 20 0.05ml, Tap water 1,000ml. 3. Other culture conditions employed for the yeast were pH 5.5-7.0, temp. $30^{\circ}C$ under an affluent aerobic state. 4. Addition of light gas oil in portions to the culture media as the growth proceeded was more effective, especially in the cultivation on the higher oil concentration media. 5. Studies on the propagation of the yeast cells in the light gas oil medium revealed that the yeast has the lag phase lasted 16 hours and the logarithmic growth phase covered 16 to 28 hours. The specific growth rate was about $0.22\;hr^{-1}$ and doubling time was 3.2 hrs. during the logarithmic growth phase. 6. Under the cultural condition employed, the cell yield against the amount of light gas oil (wt%) was 16.1% and the protein content of the dried yeast cells was 48.4%.

  • PDF

A Study on the Production of Yeast Utilizing Ethanol as a Sole Carbon Source (Ethanol 이용 미생물에 의한 단세포 단백질 생산에 관한연구)

  • Lee, Ke-Ho;Ha, Jin-Hong
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1973
  • In order to obtain the basic informations on the production of single cell protein from ethanol, 145 yeast strains utilizing ethanol as a sole carbon source were isolated from 32 soil samples in Korea. A yeast strain showing the highest cell yield among the isolated strains was selected and identified. The optimum culture condition, utilization of other carbon sources and the cultural characteristics for the selected yeast, and the chemical analysis of the yeast cell composition, and utilization of ethanol by the selected yeast were investigated. All the culture was carried out in the shaking flasks. The results obtained were as follows: 1. The selected yeast strain was identified as Debaryomyces nicotianae-SNU 72. 2. The optimum composition of the medium for the selected yeast is : Ethanol 40 ml, Urea 0.5 g, Potassium phosphate (dibasic) 0.5 g, Ammoium phosphate (monobasic) 0.15 g, Magnesium sulfate 0.05 g, Calcium chloride 0.01g, Yeast extract 0.005 g, Tap water 1000 ml. 3. The optimum pH was 5.0-5.5, the optimum temperature $30-33^{\circ}C$ and the aerobic state was unimportant. 4. Utilization of methanol, n-propanol, iso-propanol, n-butanol, iso-butanol, tert-amyl alcohol and acetic acid by the selected yeast was very weak. So substitution of the subtrate was thought to be impossible. 5. Studies on the propagation of the yeast cells showed that the lag phase of the yeast cells lasted 16 hours, and the logarithmic growth phase extended 16 to 28 hours. The specific growth rate was about $0.19\;hr^{-1}$ and the doubling time was 3.6 hours during the logarithmic growth phase. 6. As the result of the chemical analysis of the dry yeast cells, the content rate of the crude protein was 55.19 %, the content of others was similar to the average content of the yeast component. 7. After 34 hours cultivation, under the optimum culture condition investigated, the dry cell yield against the amount of the added ethanol was 53.4 % (W/V%), the dry cell yield against the amount of the utilized ethanol was 73.6 % (W/V%), the evaporation rate of ethanol was about 19.1 %.

  • PDF

Biological Treatment of Piggery Liquid Manure by Malodor Reducing Bacteria (악취 저감용 세균에 의한 돈분뇨의 생물학적 처리)

  • Quan, Xiao-Tian;Shin, Jae-Hyeong;Wang, Yan-Qing;Choi, Min-Gyung;Kim, Sang-Min;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.971-978
    • /
    • 2022
  • Sulfur-oxidizing, ammonium-oxidizing, and nitrogen-oxidizing media were used to isolate bacteria to degrade malodor gas effectively in piggery manure or soil. Twelve different strains were isolated: Paenibacillus amylolyticus, Rhodococcus jostii, Rhodococcus qingshengii, Rhodococcus opacus, Alcaligenes faecalis, Alcaligenes faecalis, Kastia adipate, Kastia adipata, Microbacterium oxydans, Halomonas campisalis, Acinetobacter oleivorans, and Micrococcus luteus. By inoculating each strain in the piggery liquid manure by 1%, the pH in most strain treatments was maintained at 8.0. Total bacterial counts were maintained at 7.3~7.9 log CFU/ml until 15 days, and then they dropped dramatically down to 5.1~5.5 log CFU/ml. On the 30th day, the treatment group inoculated with Rhodococcus opacus SK2659 showed a relatively high level of ammonium nitrogen removal, which was 39% of that of the control group. When Rhodococcus opacus SK2659 was inoculated, H2S concentration after 100 days was 3.23% compared with the control (no inoculation), suggesting that Rhodococcus opacus SK2659 is an excellent strain for removing malodor gas. The gas production of the treatments was lower than that of the control. The total accumulated amount of gas production in most strain treatments was a quarter of the gas production compared to the control throughout the experimental periods. Acinetobacter oleivorans SK2675 showed the lowest level at 12.39% compared to the control in gas production. In conclusion, the use of mixture strains, such as Rhodococcus opacus SK2659 and Acinetobacter oleivorans SK2675 isolated in this study could increase the efficacy of malodor gas reduction in the biological treatment of piggery manure.

The Demand Analysis of Water Purification of Groundwater for the Horticultural Water Supply (시설원예 용수 공급을 위한 지하수 정수 요구도 분석)

  • Lee, Taeseok;Son, Jinkwan;Jin, Yujeong;Lee, Donggwan;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.510-523
    • /
    • 2020
  • This study analyzed groundwater quality in hydroponic cultivation facilities. Through this study, the possibility of groundwater use was evaluated according to the quality of the groundwater for hydroponic cultivation facilities. Good groundwater quality, on average, is pH 6.61, EC 0.27 dS/m, NO3-N 7.64 mg/L, NH4+-N 0.80 mg/L, PO4-P 0.09 mg/L, K+ 6.26 mg/L, Ca2+ 18.57 mg/L, Mg2+ 4.38 mg/L, Na+ 20.85 mg/L, etc. All of these satisfy the water quality standard for raw water in nutrient cultivation. But in the case of farmers experiencing problems with groundwater quality, most of the items exceeded the water quality standard. As a result of the analysis, it was judged that purifying groundwater of unsuitable quality for crop cultivation, and using it as raw water, was effective in terms of water quality and soil purification. If an agricultural water purification system is constructed based on the results of this study, it is judged that the design will be easy because the items to be treated can be estimated. If a purification system is established, it can use groundwater directly in the facility and for horticulture. These study results will be available for use in sustainable agriculture and environments.

Effects of Fertilization Methods on the Growth and Physiological Characteristics of $Larix$ $kaempferi$ Seedlings in the Container Nursery System (시비처리 방법에 따른 낙엽송 용기묘의 생장 및 생리 특성)

  • Cho, Min-Seok;Lee, Soo-Won;Park, Byung-Bae
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate chemical properties of the growth medium, growth performance, chlorophyll fluorescence, and chlorophyll contents of larch ($Larix$ $kaempferi$) growing under three different fertilization treatments (Constant rate, Three stage rate, and Exponential rate fertilization). Root collar diameter and height of larch were not significantly different among treatments even though the nutrient supply of the exponential treatment was half that of the constant and three stage treatments. Chemical properties of the growth medium showed the same trends as root collar diameter and height. The total biomass and seedling quality index (SQI) were higher at Constant than at other treatments, but both SQI of Constant and Exponential were not significantly different. Photochemical efficiency and chlorophyll contents were lower at Exponential than at other treatments, but not significantly different among treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

Pollution Characteristics of Rainwater at Jeju Island during 2009~2010 (2009~2010년 제주지역 강우의 오염 특성 연구)

  • Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Lee, Yoon-Sang;Hyeon, Dong-Rim;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.818-829
    • /
    • 2013
  • The collection of rainwater samples was made at Jeju area during 2009~2010, and the major ionic species were analyzed. In the comparison of ion balance, conductivity, and acid fraction for the validation of analytical data, the correlation coefficients showed a good linear relationship within the range of 0.966~0.990. The volume-weighted mean pH and electric conductivity were 4.9 and $17.8{\mu}S/cm$, respectively, at the Jeju area. The volume-weighted mean concentrations of ionic species in rainwater were in the order of $Cl^-$ > $Na^+$ > $nss-SO_4{^{2-}}$ > $NH_4{^+}$ > $NO_3{^-}$ > $Mg^{2+}$ > $H^+$ > $nss-Ca^{2+}$ > $HCOO^-$ > $K^+$ > $PO_4{^{3-}}$ > $CH_3COO^-$ > $NO_2{^-}$ > $F^-$ > $HCO_3{^-}$ > $CH_3SO_3{^-}$. The ionic strength of rainwater was $0.26{\pm}0.21$ mM during the study period. The composition ratios of ionic species were such as 50.1% for the marine sources ($Na^+$, $Mg^{2+}$, $Cl^-$), 30.9% for the anthropogenic sources ($NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$), and 4.7% for the soil source ($nss-Ca^{2+}$), and 3.1% for organic acids ($HCOO^-$, $CH_3COO^-$). From the seasonal comparison, the concentrations of $NO_3{^-}$, $nss-Ca^{2+}$, and $nss-SO_4{^{2-}}$ increased in winter and spring seasons, indicating a reasonable possibility of long range transport from Asia continent. Especially, the acidifying contributions by major inorganic acids ($nss-SO_4{^{2-}}$ and $NO_3{^-}$) and organic acids ($HCOO^-$ and $CH_3COO^-$) were 87.6% and 12.4%, respectively. In comparison by sectional inflow pathway of air mass during the rainy sampling days, the concentrations of $nss-SO_4{^{2-}}$ and $NO_3{^-}$ were relatively high when the air mass was moved from the China continent into Jeju area.