• Title/Summary/Keyword: Soil microbiology

Search Result 1,367, Processing Time 0.026 seconds

Changes in the Composition and Microbial Community of the Pepper Rhizosphere in Field with Bacterial Wilt Disease

  • Hyun Gi, Kong;Mee Kyung, Sang;Ju Hee, An;Songhwa, Kim;Yong Ju, Jin;Jaekyeong, Song
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.692-699
    • /
    • 2022
  • Bacterial wilt caused by Ralstonia solanacearum is considered one of the most harmful diseases of pepper plants. Recently, research on plant disease control through the rhizosphere microbiome has been actively conducted. In this study, the relationship with disease occurrence between the neighboring plant confirmed by analyzing the physicochemical properties of the rhizosphere soil and changes in the microbial community. The results confirmed that the microbial community changes significantly depending on the organic matters, P2O5, and clay in the soil. Despite significant differences in microbial communities according to soil composition, Actinobacteriota at the phylum level was higher in healthy plant rhizosphere (mean of relative abundance, D: 8.05 ± 1.13; H: 10.06 ± 1.59). These results suggest that Actinobacteriota may be associated with bacterial wilt disease. In this study, we present basic information for constructing of healthy soil in the future by presenting the major microbial groups that can suppress bacterial wilt.

Comparison of the Chemotaxis Potential of Bacteria Isolated from Spinach Roots and Nonrhizosphere Soil

  • Kim, Jong-Shik;Sakai Masao;Lee, Si-Kyung;Yahng, Chahng-Sook;Matsuguchi Tatsuhiko
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.160-163
    • /
    • 2001
  • In order to investigate the role of bacterial chemotaxis in root colonization, the chemotaxis potential of bacteria isolated from spinach roots was compared with that of bacteria from nonhizosphere soil, with reference to the plant age (1,000 isolates), soil moisture conditons (1,400 isolates), and part of the root (200 isolates). The % CT (% occurrence of chemotaxis (+) isolates among total bacterial isoltes) of the root isolates significantlyfluctuated during the plant growth period, reaching a maximum after 10-15 days of growth. At this time period, the maximum % CT for the root isolates was around 70-80% CT under a soil moisture 50% WFP (% volume of water-filled pores in total soil pores), and then gradually reduced with an increasing % WFP. The results of the chemotaxis potential of each of the 100 islates from the spinach roots and nonrhizosphere soil under various % WFP demonstrated that the % CT of the root isolates were significantly higher than those of solates from the nonrhizosphere soil under a wide range of soil moisture content (35-80% WFP). Furthermore, the % CT value (80%) from the upper root was significantly higher than tht (55%) from the lower root. Compared with the % CT values of the roots, the values from the nonrhizosphere soil did not significantly vary relative to the plant age of % WFP. These results indicate that chemotaxis would appear to be a major factor in bacterial root colonization.

  • PDF

Seven Unrecorded Species of Ascomycota Isolated from the Rhizosphere Soils of Apple and Pear Trees in Korea

  • Hyeongjin Noh;Hyun Uk Cho;Jun Woo Cho;Seong Jae Ahn;Seong Hwan Kim
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.471-490
    • /
    • 2023
  • Soil is a rich source of saprobic and pathogenic fungi in crop cultivation areas. Compared with that of the fruit trees, scarce information is available regarding the fungi present in orchard soils in Korea. We sampled rhizosphere soils of apple and pear trees from several orchards in Cheongju, Anseong, and Cheonan, Korea. During the processing of soil fungi, seven unrecorded species of the phylum Ascomycota were isolated. These included Acrocalymma walkeri, Clonostachys krabiensis, Coniella vitis, Cosmospora diminuta, Lasiobolidium spirale, Penicillium vallebormidaense, and Pseudothielavia arxii. All the species were identified and described based on morphological characteristics and molecular analysis of the ITS1-5.8S-ITS2 region and the large subunit of nuclear ribosomal RNA gene and partial β-tubulin gene (BenA) sequences. Descriptions and illustrations of the morphological characteristics are provided.

Identification of Novel Phytase Genes from an Agricultural Soil-Derived Metagenome

  • Tan, Hao;Mooij, Marlies J.;Barret, Matthieu;Hegarty, Pardraig M.;Harrington, Catriona;Dobson, Alan D.W.;O'Gara, Fergal
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.113-118
    • /
    • 2014
  • Environmental microorganisms are emerging as an important source of new enzymes for wide-scale industrial application. In this study, novel phytase genes were identified from a soil microbial community. For this, a function-based screening approach was utilized for the identification of phytase activity in a metagenomic library derived from an agricultural soil. Two novel phytases were identified. Interestingly, one of these phytases is an unusual histidine acid phosphatase family phytase, as the conserved motif of the active site of PhyX possesses an additional amino acid residue. The second phytase belongs to a new type, which is encoded by multiple open reading frames (ORFs) and is different to all phytases known to date, which are encoded by a single ORF.

Responses of Soil Rare and Abundant Sub-Communities and Physicochemical Properties after Application of Different Chinese Herb Residue Soil Amendments

  • Chang, Fan;Jia, Fengan;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.564-574
    • /
    • 2022
  • Microbial diversity in the soil is responsive to changes in soil composition. However, the impact of soil amendments on the diversity and structure of rare and abundant sub-communities in agricultural systems is poorly understood. We investigated the effects of different Chinese herb residue (CHR) soil amendments and cropping systems on bacterial rare and abundant sub-communities. Our results showed that the bacterial diversity and structure of these sub-communities in soil had a specific distribution under the application of different soil amendments. The CHR soil amendments with high nitrogen and organic matter additives significantly increased the relative abundance and stability of rare taxa, which increased the structural and functional redundancy of soil bacterial communities. Rare and abundant sub-communities also showed different preferences in terms of bacterial community composition, as the former was enriched with Bacteroidetes while the latter had more Alphaproteobacteria and Betaproteobacteria. All applications of soil amendments significantly improved soil quality of newly created farmlands in whole maize cropping system. Rare sub-communitiy genera Niastella and Ohtaekwangia were enriched during the maize cropping process, and Nitrososphaera was enriched under the application of simple amendment group soil. Thus, Chinese medicine residue soil amendments with appropriate additives could affect soil rare and abundant sub-communities and enhance physicochemical properties. These findings suggest that applying soil composite amendments based on CHR in the field could improve soil microbial diversity, microbial redundancy, and soil fertility for sustainable agriculture on the Loess Plateau.

Direct Extraction of DNA from Soil for Amplification of 16S rRNA Gene Sequences by Polymerase Chain Reaction

  • Cho, Jae-Chang;Lee, Dong-Hun;Cheol, Cho-Young;Cho, Jang-Cheon;Kim, Sang-Jong
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 1996
  • Microgram quantities of DNA per gram soil were recovered with SDS- based and freeze-and thaw procedures. The average DNA fragment size was > 23 Kb. This method generated minimal shearing of extracted DNA. However, the DNA extracts still contained considerable amounts of humic impurities sufficient to inhibit PCR. Several approaches were used to reduce the interferences with the PCR (use of CTAF in extraction step, Elutip-d column purification, addition of BSA to PCR buffer) to accomplish PCR with DNA extract as a template. Most of the DNA extracts were not digested completely by restriction endonuclease, and CTAB-TREATED ane Elutip-d column purified DNA extracts were partially digested. Regarding as restriction enzyme digestion, all PCRs failed to amplify 16S rRNA gene fragments in the DNA extracts. In the case of DNA extracts only where BSA was added to PCR buffer, PCR was successfully conducted whether the DNA extracts were treated with CTAB or purified with columns. However, these two treatments were indispensable for humic impurity-rich DNA extracts to generate the PCR-compatible DNA samples. Direct extraction of DNA, coupled with these procedures to remove and relieve interferences by humic impurities and followed by the PCR, can be rapid and simple method for molecular microbiological study on soil microorganisms.

  • PDF

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum

  • Lee, Soo-Youn;Kim, Bit-Na;Choi, Yong-Woo;Yoo, Kye-Sang;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.541-546
    • /
    • 2012
  • The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

Earthworm Enhanced Bioaugmentation of PCB Contaminated Soil

  • Crowley, David E.;Luepromchai, Ekawan;Singer, Andrew S.;Yang, Chang Sool
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.100-107
    • /
    • 2000
  • In a recently developed strategy for in-situ treatment of polychlorinated biphenyls (PCB), bioaugmentation was used in conjunction with a surfactant, sorbitan trioleate, as a carbon source for the degrader bacteria, along with the monoterpene, carvone, and salicylic acid as inducing substrates. Two bacteria were used for soil inoculants, including Arthrobacter sp. st. B1B and Ralstonia eutrophus H850. This methodology achieved 60% degradation of PCBs in Aroclor 1242 after 18 weeks in soils receiving 34 repeated applications of the degrader bacteria. However, an obvious limitation was the requirement for soil mixing after every soil inoculation. In the research reported here, bioaugmentation and biostimulation treatment strategies were modified by using the earthworm, Pheretima hawayana, as a vector for dispersal and mixing of surface-applied PCB-degrading bacteria and soil chemical amendments. Changes in microbial biomass and microbial community structure due to earthworm effects were examined using DNA extraction and PCR-DGGE of 16S rDNA. Results showed that earthworms effectively promoted biodegradation of PCBs in bioaugmented soils to the same extent previously achieved using physical soil mixing, and had a lesser, but significant effect in promoting PCB biodegradation in biostimulated soils treated with carvone and salicylic acid. The effects of earthworms were speculated to involve many interacting factors including increased bacterial transport to lower soil depths, improved soil aeration, and enhanced microbial activity and diversity.

  • PDF

Effects of Parent Rocks on Soil Microbial Diversity (모암이 토양미생물 다양성에 미치는 영향)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Chon, Gil-Hyong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • The effect of parent rocks to the soil microbial diversity were investigated in soils developed from granite, limestone and basalt parent rocks. In the soils, microbial populations were positively related to the soil chemicals, such as soil pH with ftuorescent Pseudomonas, and soil EC with actinomycetes, fungi, mesophilic Bacillus and alkaliphilic bacteria. Gram negative bacteria, spore forming Bacillus, were maintained relatively same levels of population between granite, limestone and basalt soils. Among the species of Burkholderia, Pseudomonas and Ralstonia were dominated in the granite soils, Pseudomonas, Burkholderia and Phyllobacterium in the limestone soils, and Burkholderia in the basalt soils.

Microbial Diversity and Community Analysis in Lettuce or Cucumber Cultivated Greenhouse Soil in Korea (상추 및 오이 시설재배 토양의 미생물 다양성 분석)

  • Kim, Byung-Yong;Weon, Hang-Yeon;Park, In-Cheol;Lee, Sang-Yeob;Kim, Wan-Gyu;Song, Jae-Kyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1169-1175
    • /
    • 2011
  • The soil chemical properties, microbial community structures and biochemical properties of lettuce or cucumber-cultivated greenhouse soil samples were analyzed to assess soil health and characterize microbial distribution in 8 locations in Korea. Although most of chemical properties were within the soil management guidelines, the available phosphate, and the contents of exchangeable potassium and calcium were higher than those of recommended levels. In the culture-dependent analysis, 841 bacterial strains were isolated from the greenhouse soils and were identified at the genus level by 16S rRNA gene sequences analysis. The dominant bacterial genera were Bacillus (35.7%), Microbacterium (9.3%), Arthrobacter (5.7%) and Lysobacter (5.1%). The abundance of pseudomonads was highly variable depending on the soil samples. In the culture-independent analysis, soil microbial community was investigated by using phospholipid fatty acid (PLFA) method. Principal component analysis (PCA) showed that a specific grouping for microbial community structure in the greenhouse soils was not observed based on cultivated crops and investigated sites. The results revealed that the greenhouses soils examined are relatively sound managed in terms of soil chemical contents and microbial properties.