• Title/Summary/Keyword: Soil microbiology

Search Result 1,381, Processing Time 0.026 seconds

In Vitro Chemosensitivity Test of SK-302B on Human Colon Carcinoma Cell Lines

  • Kim, Soo-Kie;Ahn, Chan-Mug;Kim, Tae-Ue;Choi, Sun-Ju;Park, Yoon-Sun;Shin, Woon-Seob;Koh, Choon-Myung
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.261-263
    • /
    • 1996
  • SK-302B, an antibiotic purified from soil Streptomyces sp. 302, was structurally identified as echinomycin (C/sub 50/H/sub 66/N/sub 11/S/sub 2/). In the present experiment, the possibility of SK-302B as an anticolon cancer agent was investigated by using chemosensitivity system (MTT assay, clonogenic assay). Treatment of SK-302B on various colon cancer cell lines resulted in a significant cytotoxicity and tumor colony formation inhibition. These studies showed that SK-302B had a potent inhibition on colon cancer cells.

  • PDF

Characterization of a Rhizobacterium Promoting Early Growth in Maize (옥수수 초기 성장을 촉진하는 근류세균의 특성)

  • Lee Sang-Eun;Yi Hwe-Su;Park Seung-Hwan;Ghim Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.70-73
    • /
    • 2005
  • A soil bacterium was isolated from maize roots cultivated in Korea (KNUC153). The isolate was partially classified on basis of l6S rDNA sequence analysis as Stenotrophomonas maltophilia. By the acetylene reduction assay (ARA), the strain KNUC153 contained nitrogen-fixing abilities. The amount of auxin produced by the strain KNUC153 was $77.6\;{\mu}g/ml$. The strain KNUC153 produced 4 times higher amount of l-amino-cyclopropane-l-carboxy­lic acid deaminase than that of the other known strain Azospirillum sp. KNUC82. Inoculation treatment with the strain KNUC153 for maize seeds showed positive effect on early growth of the plants.

Studies on the Antifungal Antibiotics Produced by a Streptomyces sp. (Part 3) Microbiological Properties of the Strain (Streptomyces sp.가 생산하는 항진균성 항생물질에 관한 연구 (제 3 보)생산균주의 미생물학적 성질)

  • Ko, Young-Hee;Jung, Sun-Hee;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 1982
  • Streptomyces sp. No. 297 previously isolated from a soil sample collected in Mt. Soyo of Kyeongi Province, which produced strong antifungal substances t-cinnamamide and another unknown compound, was identified as Streptomyces griseorubiginosus var. soyoensis. The results of examinations in morphologial, physiological and cultural characteristics of the strain are presented.

  • PDF

Numerical Taxonomic Studies of Phenol-degrading Bacteria Isolated from Sail (토양에서 분리한 Phenol 분해세균의 수치분류)

  • Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.624-630
    • /
    • 1991
  • Sixty five phenol degrading bacteria were isolated from soil and identified. Sirnility values calculated on the basis of total 46 morphological, biochemical and physiological characteristics of the isolated strains. 65 isolates were divided into 6 clusters at the 70% simility lavei, The dominant organisms were belonged to Azotobacter, Pseudomonas and Flavobactwium.

  • PDF

Production and Characterization of a Novel Microbial Transglutaminase from Actinomadura sp. T-2

  • Kim, Hyun-Soo;Jung, Sang-Hong;Lee, In-Seon;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.187-194
    • /
    • 2000
  • An actinomycetes strain, T-2, which produces transglutaminase (EC 2.3.2.13), was isolated from soil and identified as belonging to the Actinomadura sp., based on taxonomc studies. The conditions for the transglutaminase production and its enzymatic properties were investigated. The optimum components for the transglutaminase production were 2% glucose, 1% polypeptone and soytone, and 0.1% MnCl2. The optimum pH and temperature of the enzyme reaction were pH 8.0 and $45^{\circ}C$, respectively. The enzyme was stable within the pH range of 5.0-9.0 and $30^{\circ}C-45^{\circ}C$. The novel enzyme required no calcium ions for its activity. This enzyme polymerized various proteins such as casien, soy protein, hemoglobin, egg white, gelatin, and soybean milk.

  • PDF

Phylogenetic Analysis of Mycobacterium sp. C2-3 Degrading Polycyclic Aromatic Hydrocarbons

  • Lee, Il-Gyu;Han, Suk-Kyum;Go, You-Seak;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.326-330
    • /
    • 2001
  • Mycobacterium sp. C2-3 was isolated from petroleum contaminated soil around an oil reservoir and identified by analysis of its 16S rRNA gene sequence, Strain C2-3 was able to use fluorene, phenan-threne, fluorathene and pyene as sole sources of carbon and energy, yet unable to geagrade naph-thalene, The strain was also able to use n-alkanes, such as hexadecane and heptadecane, and phenanthrene and pyrene, in particular, were degraded rapidly,. The phylogenetic data suggested that the isolate C2-3 is a thermosensitive, fast-growin strain of Mycobacterium sp.

  • PDF

Isolation and Characterization of Bacillus Species Possessing Antifungal Activity against Ginseng Root Rot Pathogens (인삼 뿌리썩음병에 길항력이 있는 Bacillus 균의 분리 동정 및 특성 조사)

  • Kim, Byung-Yong;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Sung-Il;Kim, Wan-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • Ginseng (Panax ginseng C. A. Meyer) is an economically important crop in Korea. While the consumption of the crop is gradually increasing, the yield is decreasing due to the injury of continuous cultivation or infection of soil-borne fungal pathogens such as Cylindrocarpon destructans, Fusarium solani, Rhizoctonia solani and Sclerotinia nivalis. In order to find promising biocontrol agents, we have isolated 439 soil bacteria from ginseng cultivated soil and tested their antifungal activities against ginseng rot pathogens. Among them, 3 strains were finally selected and tested for the elucidation of their genetic and biochemical properties. They were identified as Bacillus amyloliquefaciens using phylogenetic analysis based on 16S rRNA gene sequences. Moreover, all selected strains showed positive reaction for PCR detection targeting biosynthetic gene sequences of iturin A and surfactin. The results provided promising evidences that the bacterial strains isolated from ginseng cultivated soil can be novel biocontrol agents for ginseng cultivaion.

Studies on the Root Rot of Ginseng(VII) (인삼근부병에 관한 연구. VII)

  • 이민웅
    • Korean Journal of Microbiology
    • /
    • v.15 no.1
    • /
    • pp.20-30
    • /
    • 1977
  • Relationship of soil properties and seasonal variation on microbilogical population to-continuous culture and first-time culture of ginseng was investigated by bimonthly from May 1976 to January 1977. pH and P contents of 2 years continuous culture of soil were higher than other culture plot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was conplot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was contained more potassium contents than other culture plot of soil. In microbiological fluctuation with seasonr in various soil conditions, the population, trends of Fusarium spp., Erwiniaspp., and flourescent Psedudomonas spp. were increased in May and July in general, but decreased in the other month. It was observed that in all type of soil, Fusarium spp. was distributed in abundance in and on rihizosphere, and decreased the propagules numbers as soil depth increase. The numbers of Erwinia spp. and fluorescent Pseudo-monas spp. were distributed greater in numbers on the surface zone of soil depth decreasing the numbers along the soil layer increase, and also in 2years continuous culture of soil especially, a great numbers of Erwinia spp. and fluorescent Pseudomonas were evenly distributed in surface zone and rhizosphere. Ginseng disease with a high incidence of bacterial disease in continuous culture of 2 and 4 years was seemed to be associated with soil bacteria that was high in numbers of Erwinia spp. and fluorescent Pseudomonas spp. in May and July.

  • PDF

Selection and Characterization of Forest Soil Metagenome Genes Encoding Lipolytic Enzymes

  • Hong, Kyung-Sik;Lim, He-Kyoung;Chung, Eu-Jin;Park, Eun-Jin;Lee, Myung-Hwan;Kim, Jin-Cheol;Cho, Gyung-Ja;Cho, Kwang-Yun;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1655-1660
    • /
    • 2007
  • A metagenome is a unique resource to search for novel microbial enzymes from the unculturable microorganisms in soil. A forest soil metagenomic library using a fosmid and soil microbial DNA from Gwangneung forest, Korea, was constructed in Escherichia coli and screened to select lipolytic genes. A total of seven unique lipolytic clones were selected by screening of the 31,000-member forest soil metagenome library based on tributyrin hydrolysis. The ORFs for lipolytic activity were subcloned in a high copy number plasmid by screening the secondary shortgun libraries from the seven clones. Since the lipolytic enzymes were well secreted in E. coli into the culture broth, the lipolytic activity of the subclones was confirmed by the hydrolysis of p-nitrophenyl butyrate using culture supernatant. Deduced amino acid sequence analysis of the identified ORFs for lipolytic activity revealed that 4 genes encode hormone-sensitive lipase (HSL) in lipase family IV. Phylogenetic analysis indicated that 4 proteins were clustered with HSL in the database and other metagenomic HSLs. The other 2 genes and 1 gene encode non-heme peroxidase-like enzymes of lipase family V and a GDSL family esterase/lipase in family II, respectively. The gene for the GDSL enzyme is the first description of the enzyme from metagenomic screening.

Isolation of an Indigenous Imidacloprid-Degrading Bacterium and Imidacloprid Bioremediation Under Simulated In Situ and Ex Situ Conditions

  • Hu, Guiping;Zhao, Yan;Liu, Bo;Song, Fengqing;You, Minsheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1617-1626
    • /
    • 2013
  • The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and $30^{\circ}C$. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).