• Title/Summary/Keyword: Soil microbial fertilizer

Search Result 260, Processing Time 0.028 seconds

Growth of Creeping Bentgrass after Application of Microbial Fertilizer Containing Saccharomyces cerevisiae HS-1 and Streptococcus thermophiles HS-2 (Saccharomyces cerevisiae HS-1와 Streptococcus thermophiles HS-2 함유 복합 미생물비료 처리 후 크리핑 벤트그래스의 생육)

  • Young-Sun Kim;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.286-296
    • /
    • 2023
  • This study was conducted to evaluate the effects of soil microbial fertilizer (SMF) containing Saccharomyces cerevisiae HS-1 and Streptococcus thermophiles HS-2 on the growth of creeping bentgrass. For the pot experiment, the treatments were as follows: no fertilizer (NF), control (3 N g/m2/month), SMF-1 (control+SMF 2 mL/m2/time), and SMF-2 (control+SMF 4 mL/m2/time). For the plot experiment, the treatments were as follows: NF, control, SMFp-1 (control+SMF 1 mL/m2/time), SMFp-2 (control+SMF 2 mL/m2/time), and SMFp-3 (control+SMF 4 mL/m2/time). In the pot experiment, visual turfgrass quality and the uptake amount of nitrogen (N) and potassium (K) were increased under the SMF treatments, whereas the content of chlorophyll (a, b, and a+b) and clipping yield were not considerably different compared with the control. In the pot experiment, the amount of SMF positively correlated with visual turfgrass quality and uptake amount of N and K. In the plot experiment, turfgrass density was increased by 12.9-19.2% under SMFp treatments compared with the control. These results indicated that the application of SMF containing Sa. cerevisiae HS-1 and St. thermophiles HS-2 improved the quality, density, and growth of creeping bentgrass via prompting the uptake of N and K.

Effects of rice straw application on the biological nitrogen fixation of paddy field -2. Effects of rice straw annual application on the biological activities and nitrogen fixing microbial flora (논토양의 생물적(生物的) 질소고정(窒素固定)에 미치는 볏짚시용효과(施用效果) -II. 질소고정미생물(窒素固定微生物) flora와 그 활성(活性)에 미치는 볏짚연용효과(連用效果))

  • Yoo, Ick-Dong;Matsuguchi, Tatsuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.443-449
    • /
    • 1988
  • The effects of rice-straw annual application on nitrogen fixing microbial flora in the soil of paddy fields and their biological activities were investigated. Experiments were performed in both NPK fertilizer applied soil and rice-straw applied soil of Agricultural Station in Aomori-ken, Japan. The following results were obtained. 1. The ARA by phototrophs was significantly increased in both soil plots. From the soil plot in which 300ppm-nitrogen was applied, the increase of ARA began to be seen from three weeks later. On the other hand, 33ppm-nitrogen applied soil plot and non-nitrogen applied soil plot showed the ARA increase from the beginning. The amount of ARA by non-phototrophs was only one-tenth of that by phototrophs. 2. For the first three weeks, the phototrophic bacteria (mainly Rhodopseudomonas) were predominant in both soil plots. Since then, as the ARA rapidly increased, the proliferation of blue-green algae forming heterocysts was remarkably promoted. Such effects were more distinct in the rice-straw annually applied soil plot than in the NPK fertilizer annually applied soil plot. 3. The degree of proliferation of blue-green algae depended on the amount of applied nitrogen. While Anabaena, Nostoc and Cylindrospermum were largely proliferated in the non-nitrogen applied soil plot, Cylindrospermum and Calothrix were in the 33ppm-nitrogen applied soil plot, but Calothrix tended to predominated in the 100ppm-nitrogen applied soil plot.

  • PDF

Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.410-420
    • /
    • 2012
  • The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.

Effects of Composted Pig Manure Application on Enzyme Activities and Microbial Biomass of Soil under Chinese Cabbage Cultivation (돈분퇴비의 시용이 토양의 미생물체량 및 효소활성에 미치는 영향)

  • Weon, Hang-Yeon;Kwon, Jang-Sik;Shin, Yong-Kwang;Kim, Seung-Hwan;Suh, Jang-Sun;Choi, Woo-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.109-115
    • /
    • 2004
  • To elucidate the effects of composted pig manure on soil biochemical properties, composted pig manure was amended in a sandy loam soil and Chinese cabbage was grown. Composted pig manure treatments included 8, 29 and $57Mg\;ha^{-1}$ for CM-08, CM-29, and CM-57 plots, respectively. Biomass contents and enzymes activities in the non-rhizophere soil were measured. Activities of protease, phosphomonoesterase and dehydrogenase in the plot CM-57 increased to 2.3, 1.6, and 2.4 fold as compared with those of the control plot. Soil microbial biomass contents increased in proportion to the application rates of compost and biomass C, N, and P in the plot CM-59 were 4.3, 3.4, 2.8-fold higher than those of control p1ot(no fertilizer), respectively. During cultivation of Chinese cabbage, biomass C and N were higher in the middle growth stage, although biomass P was the highest in the early growth stage. The average ratio of biomass C:N:P was 11:2:1, and proportion of biomass C and N in the soil organic C and N was 1.1 and 3.6%, respectively. Activities of protease and dehydrogenase had significant correlations with biomass C and P.

Monoculture and Mixture Effects of Green Manure Crops on Soil Quality, Weed Suppression and Organic Red-pepper Production

  • Lee, Sang-Min;Jung, Jung-Ah;Choi, Bong-Su;Lee, Yong-Hwan;Lee, Jong-Sik;Song, Beom-Heon;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.581-590
    • /
    • 2011
  • Organic farming is rapidly expanding worldwide. Crop growth in organic systems greatly depends on the functions performed by soil microbes, and nutrient supply weed suppression by green manure crops input. Four red-pepper production systems were compared: 1) bare ground (conventional system); 2) hairy vetch monoculture; 3) rye monoculture; and 4) hairy vetch-rye mixture. Soil inorganic N reached the peak at 30 DAI and hairy vetch monoculture was the highest ($192mg\;kg^{-1}$) and soil total carbon was fluctuated sporadically during the experiment. Carbohydrate and phenolic compounds in soil kept significantly higher in green manure crops systems from 10 DBI to 30 DAI, however the level was the maximum at 10 DBI (carbohydrate) and 30 DAI (phenolic comounds). Incorporation of green manure crops residue enhanced soil microbial biomass C and N throughout the growing season except that MBN in rye was reduced after incorporation. Green manure crops systems suppressed weed occurrence and, in particular, it was prominent in rye monoculture. Mineral elements composition and production in red-pepper fruits were markedly decreased in green manure crops systems although hairy vetch monoculture has come close to bare ground (NPK-applied). Therefore, it was suggested that higher biomass production should be performed not only to improve soil quality and suppress weeds but to yield suitable red-pepper fruits in green manure crops-based organic farming.

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field (시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Kim, Yeong-Suk;Kwon, Oh-Hoon;Kwon, Tae-Ryong;Park, Sang-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

Microbial Fertilizer Containing Lactobacillus fermentum Improved Creeping Bentgrass Density (유산균(Lactobacillus fermentum) 함유 미생물제제의 크리핑 벤트그래스 밀도개선 효과)

  • Jo, Gi-Woong;Kim, Young-Sun;Ham, Soun-Kyu;Bae, Eun-Ji;Lee, Jae-Pil;Kim, Doo-Hwan;Kim, Woo-Sung;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.322-332
    • /
    • 2017
  • Microbial fertilizer has been used to prompt turfgrass growth and quality and to prevent turfgrass diseases in turfgrass management of golf courses. This study was conducted to evaluate effects of microbial fertilizer containing Lactobacillus fermentum (MFcL) on changes of turfgrass quality and growth by investigating turf color index, chlorophyll index, clipping yield, and nutrient content in the turfgrass tissue. Treatments were designed as follows; non-fertilizer (NF), control fertilizer (CF), MFcL treatments [CF+$1.0g\;m^{-2}$(MFL), CF+$2.0g\;m^{-2}$ (2MFL)], and only MFcL treatment (OMF; $1.0g\;m^{-2}$ MFL). Chemical properties of soil by application of MFcL was unaffected. Turf color index, chlorophyll index, clipping yield and nutrient content and uptake of MFcL treatments were similar to CF. Furthermore, turfgrass shoot density of MFL was increased by 20% than that of CF, and that of OMF by 22% than NF. These results show that the application of microbial fertilizer containing L. fermentum increased turfgrass shoot density, which is not attributed to nutrient uptake in this study, but needs to be further investigated with other mechanisms such as biostimulant induction or phytohormone production.

Assesment on the Inoculation Effects of Phosphate-solubilizing Microorganisms by Soil Microbial Biomass (토양미생물(土壤微生物) Biomass에 의한 인산염(燐酸鹽) 가용화균(可溶化菌) 접종효과(接種效果)의 평가(評價))

  • Suh, Jang-Sun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 1996
  • Several phosphate-solubilizing microorganisms were isolated in order to enhance the availability of insoluble phosphates accumulated in soils. Among the microorganisms, Aspergillus niger was selected and identified for this study. The phosphate-solubilizing activity. the phosphorus uptake by plants and the changes in soil microbial biomass by inoculation of Aspergillus niger were investigated. The uptake amounts of phosphorus by lettuce and pimiento were increased by inoculation of Aspergillus niger in all experimental treatments. There was negative correlation between the soil microbial biomass P and the soil phosphorus content. However the soil available phosphorus ($Y=-0.0007X^2+0.7126X^2-29.46$, $R=0.8283^{**}$) and the phosphorus absorption of plants ($Y=0.0049X^2-2.2352X+326.34$, $R=0.6350^*$) were significantly correlated to soil microbial biomass C on the positive section of quadric curve.

  • PDF

Assessment of Microbial Community in Paddy Soils Cultivated with Bt and Nakdong Rice (Bt 벼의 토양미생물상 영향 비교평가)

  • Sohn, Soo-In;Ahn, Byung-Ohg;Chi, Hee-Youn;Cho, Byung-Kwan;Cho, Min-Seok;Shin, Kong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.829-835
    • /
    • 2012
  • The cultivation of genetically modified (GM) crops has increased due to their economic and agronomic advantages. Before commercialization of GM crops, however, we must assess the potential risks of GM crops on human health and environment. The aim of this study was to investigate the possible impact of Bt rice on the soil microbial community. Microbial communities were isolated from the rhizosphere soil cultivated with Bt rice and Nakdong, parental cultivar and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional rice were not significantly different. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures during cultural periods were very similar each other. Analysis of dominant isolates in the rhizosphere cultivated with Bt and Nakdong rice showed that the dominant isolates from the soil of Bt rice and Nakdong belonged to the Proteobacteria, Cloroflexi, Actinobacteria, Firmicutes, and Acidobacteria. These results indicate that the Bt rice has no significant impact on the soil microbial communities during cultivation period. Further study remains to be investigated whether the residue of Bt rice effect on the soil environment.

Correlation between Disease Occurrences and Microbial Community Structure by Application of Organic Materials in Pepper (유기농자재 사용에 따른 고추 병해 발생과 토양 미생물상 구조의 상관관계)

  • Cho, Gyeongjun;Kim, Seong-Hyeon;Lee, Yong-Bok;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.202-209
    • /
    • 2020
  • Organic farming is necessary to sustainable agriculture, preserve biodiversity and continued growth the sector in agriculture. In organic farming, reduced usage of chemical agents that adversely affect human health and environment, employing amino acids and oil cake fertilizer, plant extracts, and microbial agents are used to provide safe agricultural products to consumers. To investigation microbiome structure, we proceeded on the pepper plant with difference fertilizers and treatments in organic agriculture for three years. The microbial communities were analyzed by the next generation sequencing approach. Difference soil microbiota communities were discovered base on organic fertilizer agents. Occurrences of virus and anthracnose diseases had a low incidence in conventional farming, whereas bacteria wilt disease had a low incidence in microbial agents treated plots. Microbe agents, which applied in soil, were detected in the microbial community and the funding suggested the applied microbes successfully colonized in the organic farming environment.