Effects of Composted Pig Manure Application on Enzyme Activities and Microbial Biomass of Soil under Chinese Cabbage Cultivation

돈분퇴비의 시용이 토양의 미생물체량 및 효소활성에 미치는 영향

  • Weon, Hang-Yeon (National Institute of Agricultural Science and Technology, RDA) ;
  • Kwon, Jang-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Shin, Yong-Kwang (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Seung-Hwan (National Institute of Agricultural Science and Technology, RDA) ;
  • Suh, Jang-Sun (National Institute of Agricultural Science and Technology, RDA) ;
  • Choi, Woo-Young (College of Agriculture and Life Science, Chungnam National University)
  • Received : 2004.01.28
  • Accepted : 2004.02.27
  • Published : 2004.04.30

Abstract

To elucidate the effects of composted pig manure on soil biochemical properties, composted pig manure was amended in a sandy loam soil and Chinese cabbage was grown. Composted pig manure treatments included 8, 29 and $57Mg\;ha^{-1}$ for CM-08, CM-29, and CM-57 plots, respectively. Biomass contents and enzymes activities in the non-rhizophere soil were measured. Activities of protease, phosphomonoesterase and dehydrogenase in the plot CM-57 increased to 2.3, 1.6, and 2.4 fold as compared with those of the control plot. Soil microbial biomass contents increased in proportion to the application rates of compost and biomass C, N, and P in the plot CM-59 were 4.3, 3.4, 2.8-fold higher than those of control p1ot(no fertilizer), respectively. During cultivation of Chinese cabbage, biomass C and N were higher in the middle growth stage, although biomass P was the highest in the early growth stage. The average ratio of biomass C:N:P was 11:2:1, and proportion of biomass C and N in the soil organic C and N was 1.1 and 3.6%, respectively. Activities of protease and dehydrogenase had significant correlations with biomass C and P.

가축분 퇴비가 토양의 생화학적 특성에 미치는 영향을 조사하고자, 농업과학기술원 시험포장에 시용량 ($8Mg\;ha^{-1}$, CM-8구: $29Mg\;ha^{-1}$, CM-29구: $57Mg\;ha^{-1}$, CM-57구)을 달리하여 돈분퇴비를 시비하고 봄배추를 재배하면서 생육시기별로 토양을 채취하여 biomass, 효소활성도의 변화를 조사하였으며, 그 결과를 요약하면 다음과 같다. 토양효소 활성은 NPK구의 경우 대조구에 비하여 낮았으나 퇴비구에서는 증가하여 CM-57구에서 protease, Phosphomonoesterase 그리고 dehydrogenase의 활성이 각각 2.3, 1.6 및 2.4배 증가하였다. Protease와 phosphomonoesterase의 경우 재배기간중 모든 처리구에서 생육중기에 가장 높은 활성을 나타내었다. Biomass는 퇴비의 시용랑에 따라 증가하여 biomass C의 함량은 CM-57구에서 $466mg\;kg^{-1}$으로 대조구에 비하여 4.3배, biomass N과 P는 각각 3.4배, 2.8배 증가하였다. 한편 NPK구에서는 biomass C와 N은 증가하였으나 biomass P는 낮았다. 퇴비구에 있어서 biomass N과 P는 배추의 생육중기에 최고치에 달하였으나 biomass C의 함량은 생육초기에 증가하여 수확기까지도 높은 함량을 유지하였다. 평균 biomass C:N:P 비율은 11:2:1이었으며, 토양의 유기 탄소 및 질소함량에 대한 biomass C와 N의 비율은 각각 1.1 및 3.6%이었다. 재배토양의 protease와 dehydrogenase는 biomass C 및 P와 고도로 유의한 상관관계를 나타내었다.

Keywords

References

  1. Anderson, J. P. E., and K. H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21:471-479 https://doi.org/10.1016/0038-0717(89)90117-X
  2. Bolton, H. Jr., L. F. Elliot, and R. I. Papendick. 1985. Soil biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol. Biochem. 17:297-302 https://doi.org/10.1016/0038-0717(85)90064-1
  3. Bottmer, P. 1985. Response of biomass to alternate moist and dry conditions in a soil incubated with $^1^4C$- and $^1^4N$-labelled plant material. Soil Biol. Biochem. 17:297-337 https://doi.org/10.1016/0038-0717(85)90064-1
  4. Brookes, P. C., D. S. Powlson, and D. S. Jenkinson. 1984. Phosphorus in the soil microbial biomass. Soil Biol. Biochem. 16:169-175 https://doi.org/10.1016/0038-0717(84)90108-1
  5. Casida, L. E. Jr., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98:371-376 https://doi.org/10.1097/00010694-196412000-00004
  6. Ceccanti, B., B. Pezzarossa, F. J. Gallardo, and G. Masciandaro. 1993. Biotests as marker of soil utilisation and fertility Geomicrobiol. J. 11:309-316 https://doi.org/10.1080/01490459309377960
  7. Coleman, D. C., C. P. P. Reid, and C. Cole. 1983. Biological strategies of nutrient cycling in soil systems. Adv. Eco. Res. 13:1-55 https://doi.org/10.1016/S0065-2504(08)60107-5
  8. Duxbury, J. M., M. S. Smith, and J. W. Doran. 1989. Soil organic matter as source and a sink of plant nutrients, p. 33-68. In D. C. Coleman et al. (ed.). Dynamics of soil organic matter in tropical ecosystems, University of Hawaii Press, Honolulu, Hawaii
  9. Fauci, M. F., and R. P. Dick. 1994. Soil microbial dynamics: Short-and long-term effects of inorganic and organic nitrogen. Soil Sci. Soc. Am. J. 58:801-806 https://doi.org/10.2136/sssaj1994.03615995005800030023x
  10. Flie$\beta$Sbach, A., R. Martens, and H. H. Reber. 1994. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 26:1201-1205 https://doi.org/10.1016/0038-0717(94)90144-9
  11. Goyal, S., M. M. Mishira, I. S. Hooda, and R. Singh. 1992. Organic matter-microbial biomass relationships in field experiments under tropical condition: effect of inorganic fertilization and organic amendments. Soil Biol. Biochem. 24:1081-1084 https://doi.org/10.1016/0038-0717(92)90056-4
  12. Hadas, A., and R. Portnoy. 1994. Nitrogen and carbon mineralization rates of composted manures incubated in soil. J. Environ. Qual. 23:1184-1189 https://doi.org/10.2134/jeq1994.00472425002300060008x
  13. Ladd, J. N., L. Jocteur-Monrozier, and M. Amato. 1988. Carbon turnover and nitrogen transformations in an alfisol and vertisol amended with [U-$^1^4C$] glucose and [$^1^5N$] ammonium sulfate. Soil Biol. Biochem. 24:359-371 https://doi.org/10.1016/0038-0717(92)90196-5
  14. Mazzarino, M. J., L. Szott, and M. Jimenes. 1992. Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical agro-ecosystems. Soil Biol. Biochem. 25:205-214 https://doi.org/10.1016/0038-0717(93)90028-A
  15. McGill, W. B., K. R. Cannon, J. A. Robeison, and F. D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66:1-19 https://doi.org/10.4141/cjss86-001
  16. Sakamoto, K., and Y. Oba. 1993. Relationship between available N and soil biomass in upland field soils. Jpn. J. Soil Sci. Plant Nutr. 64:42-48
  17. Shindo, H. 1992. Effect of continuous compost application on the activities of protease, $\beta$-acetylglucosamidase, and adenosine deaminase in soils of upland fields and relationships between the enzyme activities and the mineralization of organic nitrogen. Jpn. J. Soil Sci. Plant Nutr. 63:190-195
  18. Skujins, J. 1978. History of abiotic soil enzyme research, p. 1-49. In R. G. Burns (ed.). Soil enzymes. Academic press, New York, USA
  19. Srivastava, S. C., and J. S. Singh. 1990. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux Soil Biol. Biochem. 23:117-124 https://doi.org/10.1016/0038-0717(91)90122-Z
  20. Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1:301-307 https://doi.org/10.1016/0038-0717(69)90012-1
  21. Tate, K. R., D. J. Ross, and C. W. Feltham. 1988. A direct extraction method to estimate soil microbial C: effect of experimental variables and some different calibration procedure. Soil Biol. Biochem. 20:329-335 https://doi.org/10.1016/0038-0717(88)90013-2
  22. Tyler, G. 1982. Heavy metals in soil biology and biochemistry, p. 371-414. In E. A. Paul and J. N. Ladd (ed.). Soil Biochemistry. Marcel Dekker, New York, USA
  23. Weon, H. Y., J. S. Kwon, J. S. Suh, and W. Y. Choi. 1999. Soil microbial flora and chemical properties as influenced by the application of pig manure compost. J. Korean Soc. Soil Sci. Fert. 32:76-83