• Title/Summary/Keyword: Soil microbial activity

Search Result 333, Processing Time 0.039 seconds

Effect of Combined Application of Bottom Ash and Compost on Heavy Metal Concentration and Enzyme Activities in Upland Soil (밭 토양에서 바닥재와 축분퇴비의 혼합시용이 토양의 중금속 함량 및 효소활성에 미치는 영향)

  • Kim, Yong Gyun;Lim, Woo Sup;Hong, Chang Oh;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.262-270
    • /
    • 2014
  • BACKGROUND: Coal combustion bottom ash(BA) has high carbon and calcium content, and alkaline pH, which might improve nutrient cycling in soil related to microbial enzyme activities as it is used as soil amendment. However, it contains heavy metals such as copper(Cu), manganese (Mn), and zinc(Zn), which could cause heavy metals accumulation in soil. Compost might play a role that stabilize BA. The objective of this study was to evaluate effect of combined application of BA and compost as soil amendment on heavy metals concentration, enzyme activities, chemical properties, and crop yield in upland soil. METHODS AND RESULTS: BA was applied at the rate of 0, 20, 40, and 80 Mg/ha under different rate of compost application (0 and 30 Mg/ha) in radish (Raphanus sativus var) field. Combined application of BA and compost more improved chemical properties such as pH, EC, OM, total nitrogen, available phosphate, and exchangeable cations of soil than single application of BA. Water soluble Mn and Zn concentration in soil significantly decreased with increasing application rate of BA. Decrease in those metals concentration was accelerated with combined application of BA and compost. Urease and dehydrogenase activities significantly increased with increasing application rate of BA. Phosphotase activities were not affected with single application of BA but increased with combined application of BA and compost. Radish yield was not affected by application rate of BA. CONCLUSION: From the above results, combined application of BA and compost could be used as soil amendment to improve chemical properties and enzyme activities of soil without increase in heavy metal concentration and decrease in crop yield in upland soil.

Research on the Germination and Growth of Ginseng Seeds According to ICT-Based Soil (ICT 기반의 인삼 공정 육묘 시 상토에 따른 발아 특성)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.51-61
    • /
    • 2021
  • As a result of examining the germination rate between ginseng varieties, Jagyongjong varieties had the highest germination rate, and Yeonpung. had the lowest germination rate. In the ginseng seed germination rate experiment, the highest germination rate and growth condition were shown in artificial soil conditions of the ratio of Peatmoss 6.5: Pearlite 2: Masato 1.5. Good soil conditions require adequate soil moisture forces during the incubation period. The cultivation of ginseng medicinal crops requires optimal soil breathability, soil pH, and soil stabilization, which are important for root breathing. Microbial activity in the soil has a great influence on the growth of ginseng. The optimum pH of the soil for ginseng cultivation is 5.0-5.5 As a result of the experiment, the soil remained in an appropriate range after a month. In general, when the EC concentration value of the soil for ginseng cultivation is 0.2 mS/cm or more, growth deteriorates, and when the EC concentration value is 0.5 mS/cm or more, concentration obstacles such as root decay occur. As a result of the analysis, the higher the concentration value of EC, the more likely it is to interfere with ginseng growth.

Model Study of the Fate of Hydrocarbons in the Soil-Plant Environment (녹지 토양내 탄화수소화합물의 분포변화에 관한 모델링 연구)

  • Yoon-Young Chang;Kyung-Yub Hwang
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1996
  • In recent years, phytoremediation, the use of plants to detoxify hydrocarbons, has been a promising new area of research, particularly in situ cleanup of large volumes of slightly contaminated soils. There is increasing need for a mathematical model that can be used as a predictive tool prior to actual field implementation of such a relatively new technique. Although a number of models exist for solute-plant interaction in the vegetated zone of soil, most of them have focused on ionic nutrients and some metals. In this study, we developed a mathematical model for simulation of bioremediation of hydrocarbons in soil, associated with plant root systems. The proposed model includes root interactions with soil-water and hydrocarbons in time and space, as well as advective and dispersive transport in unsaturated soil. The developed model considers gas phase diffusion and liquid-gas mass exchanges. For simulation of temporal and spatial changes in root behavior on soil-water and with hydrocarbons, time-specific distribution of root quantity through soil was incorporated into the simulation model. Hydrocarbon absorption and subsequent uptake into roots with water were simulated with empirical equations. In addition, microbial activity in the rhizosphere, a zone of unique interaction between roots and soil microorganisms, was modeled using a biofilm theory. This mathematical model for understanding and predicting fate and transport of compound in plant-aided remediation will assist effective application of plant-aided remediation to field contamination.

  • PDF

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes (토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Kuk, Yong-In;Choi, In-Young;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.

Enhancing resistance to major fungal pathogens of Panax ginseng, by BTH-induced systemic resistance (BTH 처리한 배배양 인삼에서 주요 진균병 저항성 증진 효과)

  • Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.99-103
    • /
    • 2016
  • In perennial ginseng plantations, the effective control of various diseases is one of the most critical factors for increasing yields. Enhancing the resistance to disease through induced systemic resistance (ISR) and anti-microbial activity of beneficial soil bacteria, is currently considered to be a potential promising approach to integrate pathogen management for sustainable agriculture. However, the effective in vitro culture systems for testing ISR in ginseng plants have been rarely reported. In this study, I have successfully developed an in vitro germ-free culture system of Panax ginseng seedling for diverse purposes. With this useful system, we also tested BTH-induced priming effects against Botrytis cinerea and Colletotrichum panacicola. Compared to the drain method for enhancing ISR effects to ginseng seedlings, the direct method of spraying leaves somewhat increased the defense activity to these major fungal pathogens. Consistently, the expression of pathogen related PgPR10 and PgCAT were greatly and rapidly enhanced in the BTH-treated ginseng seedlings by treatment with C. panacicola. Our results revealed that the in vitro culture system can be used for developing eco-friendly and versatile bio-control agents for harmful diseases in ginseng cultivation.

Characterization of Microbial Nitrate Uptake by Bacillus sp. PCE3 (Bacillus sp. PCE3 균주에 의한 질산이온 흡수 특성)

  • Yun, Yeong-Bae;Park, Soo-Jin;Han, Min-Woo;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.241-244
    • /
    • 2013
  • Nitrate is one of the major nutrients in plants, and nitrate fertilizer often overused for the high yields of crops. Nitrate deposit in soil became one of the major reasons causing salt stress. Specially, salt stress is a serious problem in the soils of plastic film or glass houses. In this study, six microorganisms have been isolated from the wet soils near the disposals of livestock farms and their nitrate uptake activities were investigated. These bacteria were able to remove nitrate as high as 1,000-3,000 ppm (10-50 mM). The strain PCE3 showed the highest nitrate uptake activity and it removed more than 3,700 ppm. In order to identify these bacteria, genes of 16S rRNA were sequenced and analyzed. Phylogenetic trees were constructed with the neighbor-joining methods. Among these bacteria, strain PCE3 was identified as Bacillus species. When the growth and nitrate uptake activities were measured, both were maximal at $37^{\circ}C$ and optimal pH was pH 7-9. Bacillus sp. PCE3 removed nitrate up to 40-60 mM (2,500-3,700 ppm) depending on the nitrate concentration in media. Therefore, Bacillus sp. PCE3 can be a good candidate for the microbial remediation of nitrate-deposited soils in glass and plastic film houses.

Air Pollution Effects on Soil Chemical Properties, Lichens, Denitrifying and Sulfur-Reducing Bacteria Around the Yeochun Industrial Estate (여천공단의 대기오염이 토양의 화학적 특성, 지의류, 탈질균 및 황산환원균에 미치는 영향)

  • Yu, Jung-Hwan;Ka, Kang-Hyun;Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.178-185
    • /
    • 1995
  • Air pollution effects on soil chemical properties, denitrifying and sulfur-reducing bacteria and lichens were examined around the Yeochun industrial estate. Soil samples were collected from mountain and/or mountain edges around the Namhae Chemical Corp., which is located at the southern edge of the estate, and sampled plots which were selected at 2km, 4km, 6km, 8km, and 10km apart from the industrial estate. The forest soils around the industrial estate could be classified into the Reddish yellow forest soil group, but soil pH was quite lower than the soils of the group. Because of the extremely low soil pH, microbial activity related to mineralization of organic matter was expected to be very low even though C/N ratio ranged from 15 to 20. As a result, soil organic matter and total nitrogen in soil were relatively high compared to the soils of the group. In general, soil chemical properties around the industrial estate up to 4km apart from the estate were significantly different from the rest(more than 6km apart from the estate) possibly due to air pollution. However, denitrifying bacteria and sulfur-reducing bacteria did not show significant differences in colony forming units by the distances from the industrial estate. By the way, lichens showed distinct differences in frequencies and coverages by the distances from the industrial estate possibly due to air pollution. The corticolous lichens showed more sensitive response to the air pollution compared to the saxicolous lichens.

  • PDF

Isolation of N-Iauroyl Tyrosine Antibiotic in E. coli Carrying N-acyl Amino Acid Synthase Gene from Environmental DNA in Korean Soils (한국 토양 환경유래의 N-acyl amino acid synthase 유전자에 의한 대장균 내 항생제 N-lauroyl tyrosine 생산)

  • Yeo, Yun-Soo;Lim, Yoon-Ho;Kim, Jeong-Bong;Yang, Jung-Mo;Lee, Chang-Muk;Kim, Soo-Jin;Park, Min-Seon;Koo, Bon-Sung;Yoon, Sang-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.262-267
    • /
    • 2007
  • To access the natural product antibiotics produced by uncultured microorganisms, six cosmid libraries of DNA extracted directly from soil samples (environmental DNA, eDNA) were constructed and screened for the production of antibacterial active molecules. Of the approximately 60,000 clones screened, one antibacterial clone (YS92B) was detected. Ethyl acetate extracts of clone YS92B showed antibacterial activity against various pathogenic bacteria (Listeria monocytogenes, Bacillus subtilis, Pseudomonas syringae, Xanthomonas campestris pv. oryzae, Staphylococcus epidemis). Active constituents from cultures of YS92B were isolated and purified using a bioassay-guided fractionation against B. subtilis through a series of procedures (ethyl acetate extraction, Sephadex LH20 column chromatography, High Performance Liquid Chromatography). NMR (Nuclear Magnetic Resonance) spectral analysis of a major antibacterial active YS92B-VII indicated that it is a lauric acid linked to tyrosine. This report describes the characterization of antibacterially active long chain N-acyl derivatives of tyrosine that are produced by eDNA clones hosted in Escherichia coli from Korean soils.

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

Mass Cultivation of Rhodococcus sp. 3-2, a Carbendazim-Degrading Microorganism, and Development of Microbial Agents (카벤다짐 분해 미생물인 Rhodococcus sp. 3-2의 대량 배양 및 미생물 제제 개발)

  • Jun-Kyung Park;Seonghun Im;Jeong Won Kim;Jung-Hwan Ji;Kong-Min Kim;Haeseong Park;Yeong-Seok Yoon;Hang-Yeon Weon;Gui Hwan Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.259-268
    • /
    • 2023
  • Rhodococcus sp. 3-2 strain has been reported to degrade benzimidazole-based pesticides, such as benomyl and carbendazim. Therefore, this study aimed to optimize culture medium composition and culture conditions to achieve cost-effective and efficient large-scale production of the Rhodococcus sp. 3-2 strain. The study identified that the optimal media composition for mass culture comprised 0.5% glucose, 0.5% yeast extract, 0.15% NaCl, 0.5% K2HPO4, 0.5% sodium succinate, and 0.1% MgSO4. Additionally, a microbial agent was developed using a 1.5-ton fermenter, with skim milk (20%), monosodium glutamate (15%), and vitamin C (2%) as key components. The storage stability of the microbial agent has been confirmed, with advantages of low temperature conservation, which helps to sustain efficacy for at least six months. We also assessed the benomyl degradation activity of the microbial agent within field soil. The results revealed an over 90% degradation rate when the concentration of viable cells exceeded 2.65 × 106 CFU/g after a minimum of five weeks had elapsed. Based on these findings, Rhodococcus sp. 3-2 strain can be considered a cost-effective microbial agent with diverse agricultural applications.