• Title/Summary/Keyword: Soil layer

Search Result 1,782, Processing Time 0.03 seconds

The Study on the Limiting Factor to Determine Available Soil Depth in Korea (우리나라 토양의 유효토심 결정시 저해인자에 관한 연구)

  • Hyun, Byung-Keun;Rim, Sang-Kyu;Jung, Sug-Jae;Sonn, Yeon-Kyu;Song, Kwan-Cheol;Noh, Dae-Cheol;Lee, Heob-Seung;Hyun, Geun-Soo;Zhang, Yong-Seon;Hong, Suk-Young;Park, Chan-Won;Kim, Lee-Hyun;Chol, Eun-Young;Jang, Byeong-Chun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.293-302
    • /
    • 2008
  • The limiting factors to determine available soil depth were studied with 390 soil series in soil profile description and physicochemical data in Korean soils. The limiting factors were coarse sandy layer, gravel and skeletal layer, hardpan layer, cat clay layer, poorly drained layer, salt accumulated layer and bed rock layer so on. The soils of having limiting factors were 332 soil series, but soils without limiting factors were 58 soil series. Soils with limiting factors were, hardpan 5, slopeness 93, immature soil 29, cinder 5, sandy 42, gravel or skeletal 47, bedrock 19, high salt content 8, poorly drained soil 22, heavy clay 32, sulfate soil 3 and ash soil 27 etc. And the orders of available soil depth were immature > slopeness > ash > heavy clay > sandy > gravel or skeletal > hardpan > cindery > poorly drained > bedrock > acid sulfate soil > salt accumulated soil etc.

A Study on the Stress Distribution in Soil According to the Composition of the Soil Layer in Case of Surface Loading (지표면 재하시 토층구성에 따른 지중응력분포에 관한 연구)

  • Lim, Jong-Seok;Jung, Sang-Kyun;Ha, Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.510-516
    • /
    • 2005
  • This research aims to verify the stress distribution in soil according to the composition of the soil layer in case of surface loading. For this purpose, loading tests with measurement of stresses in the soil on four kinds of layered model ground in laboratory were performed. Those are (1)homogeneous sand, (2)gravel underlain by sand, (3)sand underlain by clay and (4)gravel underlain by clay. Test results are compared and analysed for the compositions of the soil layers. based on the results obtained, it is found that the larger the difference of the strengths of upper and lower layer is, the smaller the stress in the soil in case of surface loading is.

  • PDF

Geotechnical Variability Characterization of Songdo area in Incheon by Field Tests (현장시험을 이용한 인천 송도지반의 변동성 분석)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Lee, Ju-Hyung;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1435-1440
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties at Song-do region in Korea for evaluating inherent soil variability. Since soil variability is sensitive to soil layers and soil types, the COVs by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt.

  • PDF

Capillary Characteristics of Water and Cations in Multi-layered Reclaimed Soil with Macroporous Subsurface Layer Utilizing Coal Bottom Ash

  • Ryu, Jin-Hee;Chung, Doug-Young;Ha, Sang-Keon;Lee, Sang-Bok;Kim, Si-Ju;Kim, Min-Tae;Park, Ki-Do;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.406-411
    • /
    • 2014
  • Serious problems in reclaimed land agriculture are high soil salinity and poor vertical drainage, so desalinization in these soils is very difficult. Also, although desalinization is accomplished in reclaimed top soils, before long, soils are resalinized according to capillary rise of salts from the subsurface soils. To resolve these problems, multi-layered soil columns with subsurface layer of macroporous medium utilizing coal bottom ash (CBA) were constructed and the effects of blocked resalinization of these soils were investigated. In this experiment soil samples were collected from Munpo series (coarse-loamy, nonacid, mixed, mesic, typic Fluvaquents). The soil texture was silt loam and the EC was $33.9dS\;m^{-1}$. As for groundwater seawater was used and groundwater level of 1 cm from the bottom was maintained. The overall rate of capillary rise was $2.38cm\;hr^{-1}$ in soil 60 cm column, $0.25cm\;hr^{-1}$ in topsoil (30 cm) + CBA (5 cm) + subsurface soil (10 cm) column and $0.08cm\;hr^{-1}$ in topsoil (30 cm) + CBA (10 cm) + subsurface soil (10 cm) column. In multi-layered soil columns with CBA 20, 30 cm layer, wetting front due to capillary rise could not be seen in top soil layer. After 70 days capillary rise experiment water soluble Na+ accumulated in top soil of soil columns with CBA 20, 30 cm was diminished by 92.8, 96.5% respectively in comparison with Na+ accumulated in top soil of soil 60 cm column because CBA layer cut off capillary rise of salts from the subsurface soil. From these results we could conclude that the macroporous layer utilizing CBA placed at subsurface layer cut off capillary rise of solutes from subsurface soil, resulting in lowered level of salinity in top soil and this method can be more effective in newly reclaimed saline soil.

Phylogenetic characterization of bacterial populations in different layers of oak forest soil (상수리나무림의 토양 층위별 세균군집의 계통학적 특성)

  • Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • We have examined the correlation between the physicochemical and microbiological environment variables for the different layers of oak forest soil in Mt. Gyeryong, Korea. The result shows that there is a high correlation in the environment variables between the soil parameters of the fermented (F) layer and humus (H) layer. In particular, the pH level in the F layer shows a high correlation with C and N, while the various organic acids of the H layer turns out to be closely correlated with soil bacteria density. As we evaluated phylogenetic characteristics of bacterial populations by DGGE analysis with DNA extracted. Total of 175 bands including 43 bands from litter (L) layer, 42 bands from F layer, 43 bands from H layer and 47 bands from rhizosphere (A) layer were selected as the major DGGE band of oak forest soil. Based on the 16S rRNA gene sequences, 175 DGGE bands were classified into 32 orders in 7 phylum. The heat map was analyzed in order to compare the quantity of the base sequences of each order and based on the clustering of the different layers of oak forest soil, the result confirms that the F layer and H layer belong to a different cluster from that of L layer and A layer. Furthermore, it also showed that approximately 50% of the total microbial population in different layers is ${\alpha}$-proteobacteria, which indicates that they belong to the dominant system group. In particular, Rhizobiales, Burkholderiales and Actinobacteriales were observed in all the seasons and layers of oak forest soil, which confirms that they are the indigenous soil bacterial community in oak forest soil.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Analysis of Fuel Moisture Contents Change after Precipitation in the Pine tree stand during Forest Fire Period in the East sea region (영동지역 소나무림에서 강우 후 임내 연료습도 변화분석)

  • Lee, Si-Young;Lee, Myung-Woog;Kwon, Chun-Geun;Yeom, Chan-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.149-152
    • /
    • 2008
  • This study is the result between the variation of fuel moisture and the risk of forest fire through measuring the change of moisture containing ratio on-site and its average analysis for fallen leaves layer, humus layer, and soil layer in the forest. The measurement was performed on six days from the day after a rainfall. The fuel moisture on-site was measured on the day when the accumulated rainfall was above 5.0mm, and the measurements was 2 times in spring and 1 time in fall. From the pine forest which were distributed around Samcheok and Donghae in Kangwondo, three regions were selected by loose, medium, and dense forest density, and the fuel moisture was measured on fallen leaves layer, humus layer, and soil layer in the forest. for six days from the day after a rainfall. The study showed that the moisture containing ratio converged on 3 - 4 days in spring and fall for fallen leaves layer, and the convergence was made more than six days in spring and fall for the humus layer. In the other case of soil layer, the variation of moisture containing ratio after rainfall was not distinguishable regardless of season.

  • PDF

Investigation of Soil Characteristics and Landslides Probability in East Island of Dok-Do (독도 동도지역의 토질특성 및 산사태가능성 조사)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.665-671
    • /
    • 2007
  • In this study, the soil characteristics and the landslide probability are investigated in East Island of Dok-do. The distribution and depth of soil layer were investigated and the soil samples were taken from the soil layer in East Island. As the results of field investigation, the soil layer was partly distributed in specific location and the soil depth was ranged from 1cm to 50cm. Also, the soil depth was mainly ranged about 10cm in the large part of soil layer. The soils were classed as the weathered residual soils and involved many organic contents such as rotten roots and leaves. The average of water contents is 23.2%, and the average of liquid limits is 42.2%. Also, the soils is non-plastic condition. Also, the soils were mainly classed as the poor graded sand including loam contents. Meanwhile, the landslide probability was investigated through a survey of the soil layer distribution in East Island. The soil depth was very shallow in the large part of the soil layer, and the distribution area of soil layer was small. Therefore, it may predict that the landslide probability is very low due to the dissatisfaction of landslide occurrence condition.

Analysis on Relation of S-wave Velocity and N Value for Stratums in Chungcheong Buk-do (충청지역 지층별 전단파속도와 N값의 상관관계 분석)

  • Do, Jongnam;Hwang, Piljae;Chung, Sungrae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.13-22
    • /
    • 2011
  • In this study, features of correlation between S-velocity and N value are derived from 9 suspension PS layers in Chungcheong Buk-do. S-velocity to be measured on Chungcheong Buk-do is classified into 5 as conditions of stratum that are ; cohesive soil layer, sandy soil layer, gravel layer, weathering soil layer, weathered rock layer. Each correlation formulas between N value by SPT and S-velocity is proposed from these classifications. And correlation formula for whole soil body except weathered rock layer also is proposed for reference. Corelation formulas developed this study formed square expression considering existing formulas produced internationally. Strength parameter converted to linear if N value is more than 50. Features of proposed formula which came up with comparative analysis of international result of cohesive soil layer and sandy soil layer and gravel layer show similar to existing ones. But there is deference that result of correlation formula for weathered rock layer is a little smaller than domestic formula's one. Because correlations of weathered rock layer above the N value of 50 is converted into a linear formation.