• 제목/요약/키워드: Soil function

검색결과 1,047건 처리시간 0.029초

Use of the Quantitatively Transformed Field Soil Structure Description of the US National Pedon Characterization Database to Improve Soil Pedotransfer Function

  • Yoon, Sung-Won;Gimenez, Daniel;Nemes, Attila;Chun, Hyen-Chung;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Kang, Seong-Soo;Kim, Myung-Sook;Kim, Yoo-Hak;Ha, Sang-Keun
    • 한국토양비료학회지
    • /
    • 제44권5호
    • /
    • pp.944-958
    • /
    • 2011
  • Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil structure description which is routinely recorded could also be used in PTF as an input to reduce the uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. We transformed categorical morphological descriptions of soil structure into quantitative values using categorical principal component analysis (CATPCA). This approach was tested with a large data set from the US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to quantify the uncertainty. Quantified morphological description was successively used in multiple linear regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression model with only the transformed morphological variables and structural index as predictors predicted the $K_{sat}$ with $r^2$ = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. Among structural descriptions size class turned out to be an important grouping parameter in the regression tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering technique, implying the morphologically described soil structural features are closely related to soil physical as well as hydraulic properties. Although this study provided relatively new method which related soil structure description to soil structure index, the same approach should be tested using a datasets containing the actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity and the soil water retention.

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • 한국지반환경공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

인류세 이전 토양생성률과 20세기 후반 토양유실률 비교를 통한 토양경관 지속가능성 전망 (A Perspective on the Sustainability of Soil Landscape Based on the Comparison between the Pre-Anthropocene Soil Production and Late 20th Century Soil Loss Rates)

  • 변종민;성영배
    • 대한지리학회지
    • /
    • 제50권2호
    • /
    • pp.165-183
    • /
    • 2015
  • 15세기 이래로 인간의 토지이용으로 인한 토양유실은 그 어느 때보다 급격하게 증가하였다. 그러나 '현재와 같은 토양유실이 계속되면 언제까지 토양이 유지될 수 있는가?'라는 물음에 우리는 정작 답할 수 없었다. 이는 토양생성률을 정량화하는 것이 쉽지 않았기 때문이다. 최근 우주선유발 동위원소를 이용하여 토양생성률을 정량화하는 기법이 등장하였고 국내에도 이를 적용한 시도가 있었다. 본 연구는 우주선유발 동위원소를 이용한 토양생성률 및 토양생성함수 도출 원리를 소개하고, 국내 토양생성률 연구결과를 20세기 이후의 토양유실률 자료와 비교 분석하여 토양의 지속가능기간을 예측해보았다. 대관령 고원에서 추정한 인류세 이전의 토양생성률은 평균 $0.05[mm\;yr^{-1}]$으로 밝혀졌으며, 20세기 후반 인간의 토지이용이 집약적으로 나타나는 농경지에서의 토양유실률은 이에 비해 많게는 60배나 상회하였다. 현재의 토지이용이 유지될 경우, 대하천 상류지역 농경지의 표층토양은 빠르면 수십 년내 사라질 것으로 예측된다.

  • PDF

다공성 매질의 수리특성 추정 (Estimation of Hydraulic Properties in Porous Media)

  • 박재현;박창근;선우중호
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.107-113
    • /
    • 1994
  • Richards식을 해석하려면 토양의 수리특성인 물보유함수와 비포화투수계수에 대한 자료가 필요하다. SCS에서 구분한 토양군중 A, B, C에 해당한다고 판단되는 토양시료를 채취하여 각 토양군별로 본 연구에서 개발한 장치를 이용하여 물보유함수를 측정하였고, 또한 정수두법으로 포화투수계수를 측정하였다. 각 토양군을 대표할 수 있는 하나의 물보유함수와 비포화투수계수를 산정하기 위하여 van Genuchten의 물보유함수와 Mualem의 투수계수예측모형을 이용하였다. 각 토양군별로 실측된 자료를 이용하여 van Genuchten식의 매개변수를 추정한 값을 제시하였고, 그와 같은 자료는 미실측지역에서 비포화흐름을 해석하고자할 때 하나의 기준으로 사용될 수 있다.

  • PDF

정수슬러지 혼합토의 함수특성곡선과 불포화 투수 특성 (Characteristics of Soil-Water Characteristic Curve and Unsaturated Permeability of Sludge Mixture)

  • 임병권;김윤태
    • 한국지반공학회논문집
    • /
    • 제29권2호
    • /
    • pp.57-64
    • /
    • 2013
  • 본 논문에서는 정수슬러지의 고함수비 문제를 해결하고 재활용을 촉진하기 위해 정수슬러지와 화강풍화토를 다양한 배합비로 혼합하여 슬러지혼합토(sludge mixture)를 제작하고, 다양한 실내 시험을 통해 슬러지혼합토의 물리적 특성과 불포화 특성을 분석하였다. 시험 결과, 정수슬러지 함량이 증가함에 따라 동일한 모관흡수력에 대응하는 체적 함수비는 증가하였다. 또한 정수슬러지 함량 또는 세립분 함량이 증가함에 따라 공기함입치는 0.9kPa에서 2.4kPa로 증가하였다. 슬러지혼합토의 포화투수계수 값과 함수특성곡선의 결과를 활용하여 강우 시 침투해석을 수행하는데 있어서 중요한 인자인 불포화 투수함수를 산정하였다.

토양환경분야 연구동향 및 전망 (Future Directions and Perspectives on Soil Environmental Researches)

  • 양재의;옥용식;정덕영
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.1286-1294
    • /
    • 2011
  • This paper reviews the future directions and perspectives on the soil environmental researches in the 21 century. Previously, the principal emphasis of soil environmental researches had put on the enhancement of food and fiber productions. Beside the basic function of soil, however, the societal needs on soil resources in the 21st century have demands for several environmental and social challenges, occurring regionally or globally. Typical global issues with which soil science should deal include food security with increasing agronomic production to meet the exploding world population growth, adaptation and mitigation of climate change, increase of the carbon sequestration, supply of the biomass and bioenergy, securing the water resource and quality, protection of environmental pollution, enhancing the biodiversity and ecosystem health, and developing the sustainable farming/cropping system that improve the use efficiency of water and agricultural resources. These challenges can be solved through the sustainable crop production intensification (SCPI) or plant welfare concept in which soil plays a key role in solving the abovementioned global issues. Through implementation of either concept, soil science can fulfill the goal of the modern agriculture which is the sustainable production of crops while maintaining or enhancing the ecosystem function, quality and health. Therefore, directions of the future soil environmental researches should lie on valuing soil as an ecosystem services, translating research across both temporal and spatial scales, sharing and using data already available for other purposes, incorporating existing and new technologies from other disciplines, collaborating across discipline, and translating soil research into information for stakeholders and end users. Through the outcomes of these approaches, soil can enhance the productivity from the same confined land, increase profitability, conserve natural resource, reduce the negative impact on environment, enhance human nutrition and health, and enhance natural capital and the flow of ecosystem services. Soil is the central dogma, final frontier and new engine for the era of sustainability development in the $21^{st}$ century and thus soil environmental researches should be carried according to this main theme.

한반도의 몇 삼림형에 따른 임토육기물 축종량의 위도적차이에 대해서 (Latitudinal Differences in the Accumulation of Soil Organic Matter in Selected Kroean Forest Types)

  • 임양재
    • Journal of Plant Biology
    • /
    • 제14권1호
    • /
    • pp.5-13
    • /
    • 1971
  • Accumulation of soil organic matter and its vertical distribution at different latitudes in peninsular Korea were studied in the soil of four different forest types viz. Pinus densiflora forest, Castanea forest, Quercus acutissima forest and Carpinus laxiflora forest. Among them, accumulation of soil organic matter in Cheju sites, with a mean annual temperature of 15$^{\circ}C$, was maximum with increasing latitude, soil organic matter concentration decreased. Considering the relationship between concentration of soil organic matter and some climatic conditiions, it seems that concentrations of soil organic matter is a function of annual temperature, especially warmth index or cold index.

  • PDF

Evaluation of Beneficial Function for Organic Paddy Farming in Korea

  • Seo, M.C.;Park, K.L.;Ko, B.G.;Kang, K.K.;Ko, J.Y.;Lee, J.S.
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.108-110
    • /
    • 2011
  • In order to evaluation of beneficial functions for organic farming, we have divided beneficial functions as 9 sub-functions such as flooding control, fostering water resources, purifying the air, mitigating summer climate, purifying water quality, decreasing soil erosion, accumulating soil carbon, conserving biodiversity, and preventing accidents from pesticides. And they were quantified by searching related repots and statistics, and surveying fields. Organic farming, especially organic paddy farming, showed that some functions like fostering water resources, accumulating soil carbon, conserving biodiversity, and preventing accidents from pesticides were higher than conventional paddy farming, while the others were almost similar. The fostering water resources function was evaluated as 4,297 ton $ha^{-1}\;year^{-1}$ to increase about 3.6% comparing with that of conventional farming. New function for accumulating soil carbon at organic paddy fields has been assessed by 4.67 ton $ha^{-1}$ in terms of long periods over 10 years. Considering area of organic paddy farming in Korea and value of carbon price, it was evaluated monetary value as 22.4 to 84.1 billion won using replaced method. It could be also evaluated that flooding control, fostering water resources, purifying the air, mitigating summer climate, purifying water quality, decreasing soil erosion, and preventing accidents from pesticides were 2,980, 123.4, 482.6, 87.5, 0.9, 55.6, and 284.1 billion won, respectively. Conserving biodiversity function would be very big at organic farming though it couldn't be evaluated as monetary value.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Quality Assessment of the Soils Used for Urban Agriculture in Seoul and its Vicinity

  • Lim, Ga-Hee;Park, Sol-Yi;Jeon, Da-Som;Yoon, Jung-Hwan;Lee, Dan-Bi;Oh, Jun-Seok;Kim, Kye-Hoon
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.572-576
    • /
    • 2016
  • Soil quality assessment is an important tool for environmental management in an agricultural field. It can be used to evaluate the health of the soils and to establish the basis for sustainable urban agriculture and soil management. For this study, the chemical properties of the soils used for urban agriculture were examined. Results of the soil analysis for chemical properties were applied to soil quality assessment system, which is composed of principal component analysis, application to scoring function and derivation of soil quality index (SQI). Soil pH, electrical conductivity (EC), organic matter (OM), total nitrogen (T-N) were determined for minimum data set (MDS) according to principal component analysis. Based on the results of scoring for four indicators (pH, EC, OM, T-N), soil pH was the indicator that needs the most urgent management. Results of SQI derivation showed that many of the urban farms appeared to be insufficient score in comprehensive soil quality assessment. In conclusion, soil management practices based on scores derived from soil chemical indicators need to be carried out to maintain sustainable urban agricultural soil environment and to provide easy-to-understand information to urban farmers.