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Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be 
indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil 
structure description which is routinely recorded could also be used in PTF as an input to reduce the 
uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and 
soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. 
We transformed categorical morphological descriptions of soil structure into quantitative values using 
categorical principal component analysis (CATPCA). This approach was tested with a large data set from the 
US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six 
different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to 
quantify the uncertainty. Quantified morphological description was successively used in multiple linear 
regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression 
model with only the transformed morphological variables and structural index as predictors predicted the Ksat 
with r2 = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil 
structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. 
Among structural descriptions size class turned out to be an important grouping parameter in the regression 
tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering 
technique, implying the morphologically described soil structural features are closely related to soil physical 
as well as hydraulic properties. Although this study provided relatively new method which related soil 
structure description to soil structure index, the same approach should be tested using a datasets containing the 
actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to 
estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity 
and the soil water retention.
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Introduction

The performance of hydrological models relies, among 
others, on the selection of hydraulic input parameters such as 

soil water retention and hydraulic conductivity. It is difficult 
to measure these properties because their measurements 
are time consuming and costly, especially for the characterization 
of large areas of land (Nemes et al., 2006; Pachepsky and 
Rawls, 2003). An alternative is to predict these properties 
from more readily available soil data (e.g., particle sizes, 
bulk density and/or organic matter content) using pedotransfer 
functions, PTFs (Nemes et al., 2006; Pachepsky et al., 
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Table 1. Number of samples as functions of shape and texture classes. Numbers in parenthesis are samples used in the multi
model ensemble prediction.

Texture
Shape

Crumble & Granular Platy Blocky Prismatic Total
S 11 7 45 4 67

LS 10 4 48 2 64
SL 49(48) 18 221(216) 27 (25) 315 (307)
L 34 22(20) 149 (145) 19 (17) 224 (216)

SiL 51 72(69) 293 (279) 82 (74) 498 (473)
Si 0 1 3 2 6

SCL 7 2 47 (45) 7 63 (61)
CL 2 1 20 (18) 6 (5) 29 (26)

SiCL 22(19) 11(10) 94 (74) 27 (20) 154 (123)
SiC 2(1) 4 30 (8) 1(0) 37 (13)
C 1 1 5 (0) 4(1) 11 (3)

Total 189 (184) 143 (137) 955 (881) 181 (157) 1468 (1359)

2006; Rawls et al., 1998), which are defined as relationships 
between soil properties or characteristics (Wosten et al., 
1990). 

Soil structure is characterized in the field by describing 
visible units of soil peds or inferred by soil physical properties 
such as bulk density or water retention (Rawls and Pachepsky, 
2002). Shape, size, and grade (i.e., relative distinctness of 
soil structural units) of soil clods are considered to regulate 
many of the hydrological processes related to soil water, 
solute transport, and runoff from tilled landscapes (Holden, 
1995; Levine et al., 1996; Lin et al., 1999; McKenzie et al., 
1991; Pachepsky and Rawls, 2003). Previous studies confirmed 
that there is potential in using qualitative descriptions to 
assess the change of soil structure along a chronosequence 
(Calero et al., 2008; Schaetzl and Anderson, 2005), and 
for estimation of water retention and hydraulic properties 
(Levine et al., 1996; Lilly et al., 2008; Lin et al., 1999; 
Pachepsky and Rawls, 2003). Due to the non-numerical 
characteristics of soil structural descriptions, however, it 
is difficult to evaluate relationships among soil structural 
descriptions and other soil properties or hydraulic processes 
using most traditional PT methods (Pachepsky and Rawls, 
2003). A few studies identified relationships between soil 
structure and physical properties from soil databases using 
artificial neural networks (Levine et al., 1996) or regression 
trees techniques (Guber et al., 2003; Lilly et al., 2008; 
Pachepsky and Rawls, 2003; Pachepsky et al., 2006). Pachepsky 
and Rawls (2003) utilized a regression tree technique to 
estimate water retention at -33 kPa and -1500 kPa from the 
US National Pedon Characterization database. Lilly et al. 

(2008) investigated the significance of soil horizons, structure 
unit sizes, and soil textures in the estimation of saturated 
hydraulic conductivity by assigning dummy variables to 
qualitative soil structure descriptions. 

The objectives of this study were to investigate how 
qualitative soil morphological features such as aggregate 
size, shape and grade, dry/moist consistence, stickiness and 
plasticity from the US National Pedon Characterization 
database are related to soil physical and hydraulic properties 
such as clay content, bulk density, organic matter, water 
content at -33 kPa (W33) and at -1500 kPa (W1500), and 
saturated hydraulic conductivity. The relative significance 
of soil properties in the estimation of W33 and bulk density 
was investigated with transformed morphological variables 
using regression tree analyses. 

Materials and Methods

Data selection from the US National Pedon Characte-
rization database   A total of 1468 soil horizons were 
selected from the US National Pedon Characterization 
database (Table 1). Each sample contained field morpho-
logical descriptions of aggregates shapes (granular, 
wedge, blocky, platy, and prismatic), sizes (fine, medium, 
and coarse) and grades (weak, moderate, and strong), dry 
(soft and hard) and moist (loose and friable) consistency, 
plasticity (non, slightly, moderately, and very), stickiness 
(non, slightly, moderately, and very), field textural class, 
bulk density (BD), organic matter (OM), particle size 
distribution (at least five data points) and volumetric water 
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Table 2. Symbols and actual sizes of structure types as function of their qualitative (field) description (after Nikiforoff, 1941).

Structure type
Size

Fine Medium Coarse
Platy S1 (1-2 mm) S2 (2-5 mm) S3 (5-10 mm)

Prismatic S4 (10-20 mm) S5 (20-50 mm) S6 (50-100 mm)
Blocky S3 (5-10 mm) S4 (10-20 mm) S5 (20-50 mm)

Granular S1 (1-2 mm) S2 (2-5 mm) S3 (5-10 mm)

contents at pressure potentials of -33 kPa (W33) and of 
-1500 kPa (W1500). Over 64% of soils were classified as 
blocky shape and around 76% of soils were in the texture 
classes sandy loam, loam, and silt loam (Table 1). It 
should also be noted that there were only few samples 
available in clay (C), silty clay (SiC), clay loam (CL) and 
silt (Si). 

In this study, data having soil particle size distributions 
with a minimum of five data points were fitted with the 
lognormal density function defined as:
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where ln d is the log-converted particle diameter, ln dm 
is the mean and σd is the standard deviation of ln d. In the 
dataset, the size of each structural shape considered was 
classified into three size classes: fine, medium, coarse. The 
original size classification was converted to actual size 
using the classification of Nikiforoff (1941) shown in 
Table 2.

The Soil Water Retention Model and Soil Structural 
Index   The lognormal water retention model of Kosugi (1996) 
was fitted to all water retention data. The Kosugi (1996) 
water retention model assumes a lognormal distribution of 
pore radii, r, of the form: 
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where θs and θr are the saturated and residual water 
contents, respectively, rs is the median pore radius and σs 
is the standard deviation of ln r. 

The soil structural index utilized the concept of the 
Kullback-Leibler Distance (KLD) (Kullback, 1951) between 
two probability density functions )(xfs  and )(xfR  and is 

defined as: 
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If )(xfs  represents the probability density function of the 
structured soil and )(xfR  the probability density function of 
the reference pore size distribution calculated from soil 
particle size distribution following Chan and Govindaraju 
(2004). If both distributions are lognormal with parameters 
( , 

) and ( , 
), KLD can be expressed as (El-Baz 

and Nayak, 2004): 
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where the parameter values are obtained by fitting with 
the Kosugi (1996) lognormal water retention model the 
soil water retention curves of the structured soil and the 
water retention curve derived from the reference pore size 
distribution. Details on this equation can be found in Yoon 
(2009).

Pedo-Transfer Functions (PTFs) for the Estimation of 
Water Retention Curves   The van Genuchten (1980) water 
retention model parameters were estimated with the software 
ROSETTA (Schaap et al., 2001) from information on soil 
texture (sand, silt, and clay fractions), bulk density, and 
measured water content at -33 and at -1500 kPa. When 
only parameters n and α of the van Genuchten (1980) model 
of water retention were reported, the geometric mean of 
pressure potential, ψs, and standard deviation, σs, of the 
Kosugi (1996) lognormal water retention model were 
obtained by:
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and: 
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Table 3. Selected PTFs for the estimation of Ksat (cm day-1) and water retention parameters of the van Genuchten (1980) model.

Model Equation
For Ksat estimation

Wösten et al. 1999 Ksat = 1.15741exp [7.755 + 0.0352 silt + 0.93 topsoil - 0.967 D2 - 0.000484 clay2 - 0.000322 silt2 + 0.01/silt 
- 0.0748/om - 0.643 ln(silt) - 0.01398 D clay - 0.1673 D om + 0.02986 topsoil clay - 0.03305 topsoil silt]

Brakensiek et al. 1984
Ksat = 27.8 exp (19.52348 θs - 8.96847 - 0.028212 clay + 1.8107·10-4 sand2 - 9.4125·10-3 clay2 – 8.395215θs

2 

+ 0.077718 sand θs - 0.00298 sand2 θs
2 - 0.019492 clay2 θs

2 + 1.73·10-5 sand2 clay + 0.02733 clay2 θs + 
0.001434 sand2 θs - 3.5·10-6 clay2 sand)

Saxton et al. 1986 Ksat = 27.78 exp [12.012 - 7.55·10-2sand + (-3.895 + 3.671·10-2sand - 0.1103 clay + 8.7546·10-4 clay2) / θs]

Rawls et al. 1998 5361
m
effθ  

Han et al. 2008 3

inf20
+−

= s

S

satK θφ

Schaap et al. 2001 No equation available, neural network approach using software ROSETTA to estimate Ksat.
For the van Genuchten water retention model parameters (α and n)

Wösten et al. 1999

a = exp[-14.96 + 0.03135 clay + 0.0351 silt + 0.646 om + 15.29 D - 0.192 topsoil - 4.671D2 – 0.000781 
clay2-0.00687 om2 + 0.0449/om + 0.0663 ln(silt) + 0.1482 ln(om) – 0.04546 D silt – 0.4852 D om + 0.00673 
topsoil clay]
n = exp[-25.23 – 0.02195 clay + 0.0074 silt – 0.194 om + 45.5 D – 7.24 D2 + 0.0003658 clay2 + 0.002885 
om2 – 12.81/D – 0.1524/silt – 0.01958/om – 0.2876 ln(silt) – 0.0709 ln(om) – 44.6 ln(D) – 0.02264 D clay 
+ 0.0896 D om + 0.00718 topsoil clay]

Schaap et al. 2001 No equation available, neural network approach using software ROSETTA to estimate α and n.

θs = saturated water content; θinf = soil water content at the inflection point of the matric potential; infφ  = θs - θinf 
m
effθ  = saturated 

water content - water content at field capacity b = the Campbell parameter m = 3-(1/b) D = dry bulk density (g/cm3); om = % organic 
matter content; topsoil = a dumy variable (1 for topsoil, 0 for subsoil); clay = % clay content; silt = % silt content; sand = % sand 
content; S = n(θs - θr)[(2n-1)/(n-1)](1/n-1).
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where   .

Pedo-Transfer Functions (PTFs) for the Estimation of 
Ksat   A total of 1359 data points from the original 1468 
data points were used to estimate saturated hydraulic 
conductivity (Ksat, cm day-1) using seven different PTFs 
(Table 3), including a prediction with the computer program 
ROSETTA (Schaap et al., 2001) with the same options 
selected for the estimation of the van Genuchten (1980) 
water retention model parameters. The van Genuchten 
(1980) model parameters required by the Ksat model of 
Han et al. (2008) were estimated with the Wosten et al. 
(1999) and ROSETTA (Schaap et al., 2001) models. The 
two procedures are identified in Fig. 1 as Han, 2008 
(Wosten) and Han, 2008 (ROSETTA), respectively and 
are considered as two independent predictions. The PTFs 
of Han et al. (2008), ROSETTA and Wösten et al. (1999) 
showed less variance in their estimation than others (Fig 
1). Rawls et al. (1998) estimated the lowest Ksat with a 
large variance.

There may be intrinsic correlations between KLD and 
Ksat values because the PTFs used to estimate water 
retention curves for KLD estimations use the same physical 
properties to estimate Ksat. In this study, Ksat estimations 
using seven different methods were averaged to simulate 
the natural variability of Ksat and to diminish the correlation 
problem between KLD and Ksat. Guber et al. (2006) called 
this approach multi model ensemble prediction and showed 
that it is an effective tool to predict hydrological variables.

A Categorical Principal Component Analysis (CATPCA)  
A Categorical Principal Component Analysis (CATPCA) 
as implemented in the statistical software package SPSS 
(SPSS Inc., Chicago, IL, USA) was utilized to transform 
field soil morphological descriptions into quantitative 
variables. A CATPCA explores relationships among descriptors 
having various measurement types (e.g., numerical, ordinal, 
or nominal) as an optimization problem using an alternating 
least squares algorithm (Ellis et al., 2006). The optimal 
scaling is a transformed quantity from the descriptors by 
the algorithm searching for the optimal mean squared 
correlation between optimal scaling and the components. 
It does so by changing the component loadings and their 
quantifications. Combining categorical variables with optimal 
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Fig. 1. Box-plot of the estimated saturated hydraulic conductivities from multiple PTFs. A bar is the 5 and 95 
percentiles and the black circles are outliers.

scaling into the principal components maximizes the variance 
explained by the principal components for the data set 
(Calero et al., 2008; Ellis et al., 2006; Gifi, 1990; Meulman 
and Heiser, 1999). As an additional useful outcome, the 
optimal scaling can describe non linear relationships among 
those categorical variables and can also be useful for other 
analyses such as cluster analyses (Calero et al., 2008). In 
this study, texture and shape classes were assigned as multiple 
nominal types whereas the rest of the field morphological 
descriptions including size (Table 2) were assigned as ordinal 
type. Details on the criteria used for the selection of measurement 
type can be found in Carlero et al. (2008). 

The Two Step Clustering Technique   The quantitatively 
transformed categorical variables from CATPCA were used 
in the two-step clustering procedure to identify homogeneous 
groups within a dataset. Among the advantages of the 
technique are an automatic selection of the number of 
clusters, the ability to handle both categorical and continuous 
variables, and the ability to handle large data sets. The 
procedures are summarized as follows: 1) pre-clustering 
the cases into many small clusters, and 2) re-cluster the 
small clusters into the appropriate number of clusters. The 
appropriate numbers of clusters were found with the 
Schwarz's Bayesian Criterion (BIC) or the Akaike Information 
Criterion (AIC) for each number of clusters within a specified 
range. Then, hierarchical clustering is performed on the 
initial estimate and the final clusters are defined by finding 
the largest increase in Log-Likelihood distance between 
the closest clusters in each stage (SPSS Inc., 2007).

 

Statistical Approaches   The stepwise linear regression 
technique was conducted to estimate Ksat using KLD and 
the quantitatively transformed field morphological descriptions 
using CATPCA. ANOVA and non-parametric approaches 
such as the Kruskal-Wallice H and Mann-Whitney U tests 
were used to test significance of differences in measured 
soil properties, of parameters of estimated water retention 
curves (θs, θr, ψm, σ), of averaged Ksat, and of KLD related 
to texture classes, structure types, and size classes. The 
Kruskal-Wallis H test is a useful nonparametric alternative 
to one-way analysis of variance for multiple samples in 
case that the variance and sample sizes are not equal. If the 
H test confirms differences among groups, then pairwise 
comparisons using the Mann-Whitney test or Post-Hoc 
analysis with Tamahnes's T2 were used to identify details 
among variables. Data resulting from the CATPCA and 
the two-step clustering were subject to a classification and 
regression tree with a Chi-square Automatic Interaction 
Detector (CHAID) (Kass, 1980) to infer potential relationships 
among KLD and soil physical properties (clay content, 
W33, and bulk density), and newly classified clusters using 
the two-step cluster analysis.

According to visual evaluations of histograms of all 
variables, OM and KLD were log-transformed for statistical 
tests requiring normal distributions (e.g., ANOVA). 

Results and Discussion

General Characterization of the Dataset   Values of log 
OM, of water contents at -33 kPa (W33), and at -1500 kPa 
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Table 4. Summary of soil physical properties in the US National Pedon Characterization database. 

N 　 Mean Std. Deviation
Clay, % OM, % W33, % W1500, % BD, Mg/m-3 Clay OM W33 W1500 BD

Textural class*
S 67 4.89 0.49 12.06 3.89 1.59 2.65 0.54 5.76 2.06 0.13 
LS 64 6.93 1.31 16.45 6.60 1.56 2.96 1.93 8.40 2.53 0.19 
SL 315 12.45 1.44 22.39 9.92 1.53 4.40 2.65 8.21 4.04 0.23 
L 224 19.15 1.85 28.73 14.05 1.47 4.79 2.51 6.55 4.75 0.20 
SiL 498 16.69 1.91 33.12 13.69 1.40 6.59 2.37 6.25 4.45 0.18 
Si 6 6.75 0.54 34.32 9.13 1.46 3.85 0.56 5.19 5.24 0.13 
SCL 63 23.75 1.15 26.81 15.90 1.57 2.73 1.24 5.52 4.34 0.20 
CL 29 28.37 1.94 32.99 18.47 1.51 1.12 3.06 6.23 3.87 0.20 
SiCL 154 31.89 2.77 36.80 20.21 1.47 3.38 4.03 5.84 3.75 0.21 
SiC 37 48.45 2.22 40.75 26.31 1.59 5.10 2.71 4.25 5.20 0.20 
C 11 61.61 3.69 42.51 28.90 1.57 2.59 4.43 7.55 4.61 0.45 
Soil structure type
Crumble & Granular 189 17.34 4.05 27.38 12.31 1.37 9.54 4.26 8.83 5.44 0.23
Platy 143 17.19 2.01 29.45 13.03 1.44 10.23 2.38 8.57 5.37 0.18 
Blocky 955 18.38 1.49 28.71 13.46 1.50 10.50 2.24 10.13 6.50 0.21 
Prismatic 181 20.73 0.81 30.53 15.03 1.53 10.38 0.81 7.89 5.39 0.19 
Size class 
s1 196 16.94 3.64 28.22 12.58 1.38 9.81 4.31 8.62 5.45 0.22 
s2 122 18.22 2.54 28.76 13.00 1.43 9.99 2.36 9.19 5.48 0.19 
s3 300 17.67 1.64 28.43 13.30 1.49 10.80 2.29 10.31 6.82 0.21 
s4 744 18.68 1.36 28.96 13.57 1.50 10.31 2.16 9.75 6.21 0.21 
s5 79 21.65 0.82 31.17 15.76 1.51 8.49 0.72 7.83 4.90 0.17 
s6 27 21.53 0.89 28.23 14.24 1.61 15.03 0.78 10.12 7.32 0.19 
Total 1468 18.42 1.78 28.84 13.46 1.48 10.38 2.66 9.60 6.17 0.21 
*: S = sand; LS = loamy sand SL= sandy loam; L= loam; SiL= silt loam; Si= silt; SCL= sandy clay loam; CL = clay loam SiCL
= silty clay loam; SiC = silty clay; C = clay.

(W1500), and bulk density (BD) were significantly different 
(p < 0.001) across texture classes (Table 4). In agreement 
with results by Olness and Archer (2005) and Petersen et 
al., (1996), average texture class OM followed a linear 
relationship with clay. However, the linear relationship 
was not as strong when individual points were considered 
(Pearson correlation coefficient of 0.114, p < 0.001). There 
were positive correlations between W33 and clay content 
(Pearson correlation coefficient of 0.514, p < 0.001), between 
log OM and W1500 (Pearson correlation coefficient of 
0.787, p < 0.001), and between OM and BD (Pearson 
correlation coefficient of -492, p < 0.001). Petersen et al. 
(1996) reported strong correlation among clay and OM, 
CEC, and W1500. The literature reported contradictory 
results on the effects of OM on water retention values such 
as W33 and W1500 (Rawls et al., 2003). Recently, Olness 

and Archer (2005) analyzed more than 100,000 points and 
showed that both W33 and W1500 were correlated to clay 
contents, which is in agreement with results in this study.

Clay content, log OM, W33, W1500, and BD were 
significantly different (p < 0.05) among structure type 
classes (Table 4). Differences in clay content were mainly 
due to soils with a prismatic soil structure type (p < 0.01). 
Bulk density (BD) and log OM were significantly different 
among all shape classes (p < 0.05). Prismatic soils have 
the highest clay content, W33, W1500, and BD but the 
lowest OM. Rawls and Pachepsky (2002) used a regression 
tree approach to estimate W33 and found that the blocky 
and prismatic structure types had smaller averaged water 
content at -33 kPa. Their results are different than those in 
this study, but results in Rawls and Pachepsky (2002) 
comprised a subset of the data (weak grade and soft/dry 
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Table 5. Water retention properties of soils in the US National Pedon Characterization database estimated with 
ROSETTA (Schaap et al., 2001).

N
Mean Std. Deviation

θs, g/g θr, g/g ψm, kPa σ Ksat, cm day-1 θs θr ψm σ Ksat

Texture class
S 67 0.36 0.03 2.52 1.33 2.21 0.03 0.01 53.40 0.29 0.22 
LS 64 0.37 0.04 4.59 1.40 1.96 0.05 0.02 108.37 0.34 0.30 
SL 315 0.38 0.04 6.42 1.57 1.53 0.06 0.01 132.24 0.26 0.45 
L 224 0.40 0.05 9.07 1.60 1.06 0.05 0.02 150.73 0.30 0.46 
SiL 498 0.42 0.06 20.68 1.36 1.18 0.04 0.02 250.34 0.33 0.56 
Si 6 0.42 0.06 48.83 1.05 1.48 0.04 0.02 451.36 0.47 0.48 
ScL 63 0.39 0.06 2.52 1.81 1.13 0.05 0.02 24.61 0.21 0.47 
CL 29 0.42 0.07 8.08 1.70 0.73 0.05 0.01 87.59 0.28 0.40 
SiCL 154 0.45 0.08 15.71 1.66 0.59 0.05 0.02 251.58 0.45 0.45 
SiC 37 0.45 0.08 8.54 2.06 0.44 0.05 0.02 115.24 0.48 0.43 
C 11 0.46 0.08 6.55 2.27 1.22 0.10 0.03 112.96 0.65 0.92 
Soil structure type
Crumble & Granular 189 0.43 0.05 9.55 1.50 1.44 0.06 0.03 164.06 0.31 0.64 
Platy 143 0.41 0.06 15.50 1.46 1.25 0.05 0.02 245.44 0.36 0.61 
Blocky 955 0.40 0.05 12.74 1.52 1.26 0.06 0.02 208.81 0.38 0.61 
Prismatic 181 0.40 0.06 11.74 1.59 1.04 0.05 0.02 186.08 0.38 0.54 
Size class 
s1 196 0.42 0.05 10.72 1.51 1.43 0.06 0.03 197.58 0.32 0.61 
s2 122 0.42 0.06 14.50 1.45 1.23 0.05 0.04 217.04 0.35 0.65 
s3 300 0.40 0.05 12.11 1.52 1.31 0.06 0.02 206.40 0.38 0.62 
s4 744 0.40 0.05 13.02 1.53 1.23 0.05 0.02 209.10 0.39 0.60 
s5 79 0.41 0.06 10.88 1.59 1.01 0.04 0.02 181.48 0.33 0.55 
s6 27 0.38 0.05 9.67 1.61 1.07 0.04 0.02 134.75 0.43 0.49 
Total 1468 0.41 0.05 12.47 1.52 1.26 0.06 0.02 205.17 0.37 0.61 

consistency class).
Soils with structural units of estimated sizes between 2 

and 5 cm (S5, Table 2) had the highest values of W33 and 
W1500 (Table 4). Except W33 (p = 0.283), other variables 
were significantly different (p < 0.005) among size classes. 
Except W33 and OM, values of clay content, W1500, and 
bulk density increased with aggregate size. Kay and Dexter 
(1990) also found that clay content increased as aggregate 
size increased. On the other hand, results in this study are 
different than in previous ones that reported a positive 
correlation between aggregate sizes and water retention 
(Tamboli et al. 1964), and a negative correlation between 
aggregate size and bulk density (Wittmuss and Mazurak, 
1958). However, the cited studies considered aggregates 
smaller than 2 cm, whereas in this study aggregates were 
as large as 10 cm. Organic matter content (OM) decreased 
significantly as aggregate size increased (p < 0.001). Tamboli 

et al. (1964) pointed out that OM is mainly placed on the 
external surface of aggregates and, therefore, it is negatively 
correlated to aggregate size. It is worth noting that no clear 
trend or significant difference in W33 was found among 
size classes. These results differ from the finding of Pachepsky 
et al. (2006), who reported 2-5% smaller values of W33 in 
large soil aggregates. However, they used a qualitative 
scale of aggregate sizes (small, medium and large), each of 
which would contain a mix of actual sizes (see Table 2)

Estimated Ksat and parameters of the Kosugi (1994) 
model were significantly different across texture classes. 
Clay content had positive correlation with θr (Pearson correlation 
coefficient of 0.551, p < 0.001) and negative correlation 
with Ksat (Pearson correlation coefficient of -0.718, p < 
0.001). These results were expected because PTFs used in 
their estimation utilized soil texture as main inputs. The 
relationship between water retention and soil texture are 
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Fig. 2. Estimated values of a) saturated hydraulic conductivity (Ksat) and b) saturated water content (θs) plotted as functions
of soil textural and size classes. See text for details in the estimation procedures.

well known and constitute the bases for PTFs development 
(Pachepsky et al., 2006).

Among shape classes, significant differences were found 
in saturated hydraulic conductivity, Ksat (p < 0.001), saturated 
water content, θs (p < 0.001), and the standard deviation of 
the mean soil pore size, σ (p = 0.014), but no significant 
differences in residual water content, θr (p = 0.739), and 
geometric mean of soil pore size, ψm (p = 0.061) were found 
(Table 5). Values of Ksat were significantly lower in soils 
with prismatic soil structure type (p < 0.003) and higher in 
soils with granular soil structure type (p < 0.005). These 
results may be driven by the negative correlation between 
BD and Ksat (Pearson coefficient of -0.475, p < 0.001). Lin 
et al. (1999) also reported that soil structure type granular 
had greater values of Ksat than any other soil structure type 
due to a greater amount of inter-aggregate porosity in the 
granular soil structure type. On the other hand, Bouma and 
Anderson (1997) compared Ksat values from prismatic and 
blocky structures and found greater values of Ksat in the former 
that in the latter soil structure type. The discrepancy could 
be caused by the influence of texture within each soil 
structure type (Lin et al., 1999). Soils with fine texture and 
with structure type prismatic often present greater Ksat 
because of the development of macropores between aggregates 
(prisms), but soils with medium texture and prismatic 
structure type often have smaller Ksat than soils of blocky 
type.

The saturated water content, θs (p < 0.001), and Ksat (p < 

0.001) were statistically different among aggregate size 
groups. Within each texture class, Ksat and θs decreased as 
aggregate size increased (Fig. 2). It is related to the increase 
of clay content with aggregate size (Table 4). Greater Ksat 
in smaller aggregates may also correspond to results of 
Kosugi (1997) who found that smaller structural units had 
smaller ψm. Horn (1994) pointed out that Ksat through single 
aggregates were lower than Ksat between aggregates (intra-
aggregate flow), which would imply smaller Ksat values in 
larger aggregates due to a predominance of inter-aggregate 
flow over intra-aggregate flow. 

Values of KLD were highly correlated to clay content 
(Pearson correlation coefficient of 0.526, p < 0.001). Clay 
was an important grouping parameter in the estimation of 
W33 in regression trees (Pachepsky et al., 2006). There 
were significant differences (p < 0.001) in KLD among 
texture classes. Sandy soils had the lowest KLD values, 
which reflect the relationship between KLD and clay 
content. According to an ANOVA test, there were no statistical 
differences in KLD (p = 0.051) among size classes but size 
S5 had significantly greater KLD values than other size 
classes. 

Field Morphological Descriptions using CATPCA   
The two-dimensional solution with eigenvalues greater 
than 1 accounted for 49.2% of the variance from CATPCA 
using variables derived from morphological field descriptions 
(Table 6). This variance is lower than those in Calero et al. 
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Table 6. Variance Accounted For (VAF) of texture class and morphological variables considered in CATPCA.

Centroid Coordinates Vector Coordinates Total
Dimension

Mean
Dimension

Total
Dimension

Total
1 2 1 2 1 2

Texture† 0.467 0.128 0.298 0.467 0.128 0.298
Shape class† 0.235 0.786 0.51 0.235 0.786 0.51
Grade class 0.218 0.097 0.158 0.217 0.093 0.31 0.217 0.093 0.31
Moisture class 0.065 0.007 0.036 0.065 0.007 0.072 0.065 0.007 0.072
Dry class 0.319 0.011 0.165 0.319 0.011 0.33 0.319 0.011 0.33
Sticky class 0.655 0.062 0.359 0.655 0.061 0.716 0.655 0.061 0.716
Plasticity class 0.713 0.053 0.383 0.713 0.052 0.765 0.713 0.052 0.765
Size class 0.203 0.781 0.492 0.192 0.746 0.937 0.192 0.746 0.937
Total eigenvalue 2.874 1.925 2.4 2.159 0.97 3.129 2.861 1.884 3.937
Variance Accounted For‡ 35.93 24.06 29.995 35.987 16.165 52.151 35.757 23.55 49.210
†indicates multiple nominal variable. ‡VAF indicates variance explained by variable considered in principal component.

Fig. 3. Optimal scaling values for (a) texture classes, 
(b) shape classes, and (c) size classes obtained from a 
Categorical Principal Component Analysis (CATPCA).

(2008) and Scalenghe et al. (2000) who utilized similar 
procedures. Their model accounted for around 80% of the 
variance but used 17 variables as opposed to only 8 variables 
(texture, shape, grade, moisture, dryness, stickiness, plasticity, 
and size class) used in this study. Indeed the purpose of 
CATPCA in this study was to quantify field morphological 
variables. A different approach was used by Lilly et al. (2008), 
who assigned dummy values to different levels of qualitative 
variables. 

Non linear characteristics of morphological properties 
were found in the transformation (Fig. 3). Mean values of 
optimal scaling were assigned to each category of the variables. 
The optimal scaling of multiple nominal variables such as 
texture and shape class were their centroid coordinate values. 
Soils in very coarse texture classes had negative scores (Fig. 
3a). The approximate linear characteristics of shape classes 
(Fig. 3b) are in agreement with results in Calero et al. 
(2008). Increases of optimal scales from granular soil structure 
type to others such as blocky and prismatic were related to 
the clay content that was shown to be correlated to those 
classes (Calero et al., 2008). For aggregate sizes, soils can 
be grouped in two groups based on the sign of the optimal 
scaling values (Fig 3c). The first group showing negative 
optimal scaling values contains smaller size classes (s1, s2, 
s3) than the second group, which shows positive optimal 
scaling values (s4, s5, s6). Shape classes in the joint plot 
were closely located to size classes indicating high correlation 
because shape class information was already implicitly 
included in the size class category (Fig. 4a). The coordinates 
of the end point of vectors for stickiness and plasticity 
given by object scores were close together indicating high 
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Fig. 4. (a) Quantifications in joint plot of the category 
points of each of the morphological variables, and (b) plot 
of component loadings for ordinal variables with vector 
and multiple nominals for centroid coordinates. 

Fig. 5. Averaged Ksat from estimation with seven models (see Table 3) vs. Ksat estimated with stepwise linear regression 
from morphological variables and KLD (the line indicates a 1:1 relationship).

correlation between them. The cosines of the vector angles 
for variables indicated no correlation between shape class 
and other variables, and strong correlations among plasticity, 
stickiness, and moisture classes. On the first dimension, 
all variables have positive component loadings and, with 
the exception of size class, all variables are negative in the 
second dimension (Fig. 4b). As structural unit size decreases, 
the grade of soil structural elements tends to become stronger. 
Therefore, the second dimension will define a contrast between 
these two variables. Quantification of field morphological 
descriptions obtained from optimal scaling would be useful 
for other statistical analysis requiring variables in numerical 
type. 

Using transformed values from categorical morphological 
variables, stepwise linear regression analysis was performed 
to estimate Ksat. In addition to the transformed morphological 
variables, KLD was included as a predictor. The selected 
final model resulted in Ksat (cm/day) = 1.291 - 0.345*Texture 
- 0.109*Stickiness - 0.094*Dryness - 0.057*Log (KLD) - 
0.059*Plasticity - 0.029*Size - 0.031*Grade with an r2 = 
0.484 and p = 0.018 (Fig. 5). Interestingly, size class and 
KLD were selected in the final model, whereas structure 
type and moisture classes were excluded. All selected 
variables in the final model were statistically significant 
and no collinearity problem was detected. KLD and size 
class were considered important in the final stepwise regression 
model. 

Clay was an important variable, followed by aggregate 
size and shape class when KLD was estimated by regression 
tree analysis (Fig. 7). It should be noted that size class (F = 
12.51) is more informative than shape class (F = 6.63). 
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Fig. 6. Significance chart for variables in (a) cluster 1, 
(b) cluster 2, and (c) cluster 3.

Table 8. Number of samples assigned to each of 3 clusters
by the two-step clustering technique.

Cluster N % of Total
1 325 22.1
2 336 22.9
3 807 55.0

Total 1468 100%

Table 7. Correlation coefficients among transformed morphological descriptors and physical and hydraulic variables in 
the US National Pedon Characterization database.

Texture Structure type Grade Moisture Dryness Stickiness Plasticity Size 
BD -.132** .190** .071** -0.01 .190** .104** .089** .212**
Clay .739** .056* .253** .135** .279** .547** .549** .069**
Log OM .294** -.313** .076** .097** -.127** .052* .060* -.350**
W33 .666** 0.025 .287** .135** .262** .432** .492** 0.033
W1500 .695** .068** .299** .152** .307** .528** .535** .073**
Ksat -.607** -.081** -.279** -.155** -.379** -.537** -.536** -.115**
Qs .410** -.123** .081** 0.049 -0.011 .167** .174** -.139**
Qr .531** -0.007 .197** .100** .210** .344** .328** 0.001
hm .159** 0.005 .086** 0.002 .068** 0.032 .087** 0.015
sigma .217** .052* .113** .066* .114** .251** .232** 0.047
Log KLD .439** -0.021 .137** .081** .154** .379** .352** -0.015
**, Statistically significant at a = 0.05.

Transformed field morphological variables presented significant 
correlations to many physical properties (Table 7). Values 
of KLD were correlated to texture. Although Pachepsky 
and Rawls (2003) considered grade class as the most important 
variable for the estimation of W33 or water content at -10 
kPa, in this study stickiness and plasticity class were more 
related to W33. Stickiness and plasticity were also highly 
correlated to clay content and to Ksat. Although nonlinear 
transformation of field morphological descriptions helped 
to identify quantitative relationship to other measured soil 
properties, quantified field morphological variables were 
not strongly correlated to physical properties that are related 
to soil structure, such as bulk density, W33, ψm, and KLD.

Characteristics of Clustered Groups using Field Morphological 
Descriptions   The reduction of data into a smaller number 
of homogeneous groups is helpful for the identification of 
the effect of soil structure. Three groups were identified by 
the two-step clustering analysis and approximately half of 
the data was assigned to cluster 3 (Table 8). The number of 
groups was determined based on the maximized ratio of 
distance measures using Bayesian Information Criteria. 
Within each group, transformed field morphological variables 
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Table 9. Means and standard deviations of quantitatively transformed values of qualitative variable for each cluster.

Cluster 1 Cluster 2 Cluster 3
Mean Std. deviation Mean Std. deviation Mean Std. deviation

Texture -0.004 0.648 -0.630 0.739 0.264 0.468

Shape -1.634 0.146 0.441 0.300 0.474 0.046

Grade 0.105 1.086 -0.533 0.669 0.180 1.003

Moisture 0.105 0.000 -0.354 2.054 0.105 0.000

Dryness -0.439 1.244 -0.643 1.291 0.445 0.242

Stickiness -0.170 0.976 -1.009 0.752 0.489 0.727

Plasticity -0.236 0.980 -1.149 0.693 0.573 0.578

Size -1.717 0.446 0.423 0.477 0.516 0.342

were lined up vertically in descending order of importance 
(Fig. 6). For a variable to be significant, the absolute value 
of the t-statistic should exceed the boundaries defined by 
the vertical dashed lines representing the critical value. In 
cluster 1, shape class was most significant with negative 
t-statistics, followed by size classes. In cluster 3 size and 
shape classes were most significant, but with positive t-statistics. 
Dryness and size class with positive and significant t-statistics 
followed. The separation of variables into clusters can be 
confirmed by their centroids (Table 9). Mean value of 
cluster 1 for quantified texture class is between mean values 
of cluster 2 and cluster 3, indicating texture between coarse 
(cluster 3) and fine (cluster 2). Cluster 1 contained mostly 
small size of granular and platy structural types. It should 
be noted that cluster 2 consisted of lower values for all 
variables except shape and size classes. 

The selection of the clusters were based only on field 
morphological descriptions and can, therefore, be considered 
independent of the physical properties of soils and of the 
KLD values associated to the morphological properties. 
Regression tree analysis was performed to identify the 
significance of physical properties in the estimation of 
these clusters (Fig. 7). Bulk density, clay, W33, and KLD, 
considered important variables for soil structure characterization, 
were used as dependant variables for the estimation of the 
three clusters. The best predictor for the estimation of the 
three clusters was W33 (Fig. 7a). Node 1 for water content 
less than 15.40% and it was composed mainly by samples 
in cluster 2. The main predictor of Node 2 (W33 between 
15.40 and 20.50%) was KLD. Node 2 contained about 
10% of the total data equally distributed among the three 
clusters. KLD values less than 0.91 was assigned to cluster 
2 samples, whereas cluster 3 that contained the largest 
number of data points. Samples from cluster 3 containing 
the largest number of data points defined the group with 

W33 greater than 24.40% that was related to clay content. 
Grade class is considered an important grouping parameter 

in the estimation of W33 or W10 (Pachepsky and Rawls, 
2003). In this study, texture and KLD were the most important 
predictors and were superior to grade class in the estimation 
of W33 (Fig. 7b). Without KLD and texture, grade class 
was the most important variable, which validates the result 
by Pachepsky and Rawls (2003). Size classification was 
also an important grouping parameter in the tree. The 
differences between results in Pachepsky and Rawls (2003) 
and the results in this study may have been caused by the 
optimal scaling introduced by CATPCA. When considering 
categorical variables directly in a regression tree, results 
were similar to Pachepsky and Rawls (2003) except for 
plasticity class appearing superior to grade class. Indeed, plasticity 
was better correlated with water retention properties that 
grade in this data set (Table 7). While the relationship 
between conventional descriptors of soil structure such as 
shape classes and KLD was unclear, differences in KLD 
among clusters were significant (p < 0.001), which suggests 
that KLD is an important variable for the description of 
soil structure.

Conclusions

Soil structure is described as mostly categorical variables, 
thus limiting their use in PTFs or other modeling scenarios. 
In this study, categorical morphological descriptions were 
transformed to quantitative values using CATPCA. In a 
regression tree analysis, KLD turned out to be an important 
factor for explaining clusters selected by a two-step clustering 
procedure using morphological variables. Although this 
study provides an advanced method relating soil structure 
description to KLD, the same approach should be tested 
using a datasets containing measured hydraulic properties. 
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(a) 

(b) 

Fig. 7. Regression tree to estimate; (a) three clusters from the two-step clustering and (b) W33 from texture classes, 
field morphological variables, and KLD. Partitioning range of variables is shown above the box and the F statistics 
to test for significance of the variables is shown beneath each variable name. 
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More insight on the predictive power of KLD to estimate 
hydraulic properties would be achieved by considering 
measured Ksat and water retention.
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