• Title/Summary/Keyword: Soil function

Search Result 1,047, Processing Time 0.022 seconds

창원시 대산면 강변충적층의 지하수위, 하천수위, 강수량의 관련성 연구

  • 정재열;함세영;김형수;차용훈;장성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.447-450
    • /
    • 2004
  • This study was conducted to characterize groundwater and river-water fluctuations at a riverbank filtration site in Daesan-myeon adjacent to the Nakdong River, using time series analysis. Water levels from six observation wells from January 2003 to October 2003 were measured. The autocorrelation analysis indicates that the wells are divided into three groups: group 1 represents strong linearity and memory, group 2 intermediate linearity and memory, and group 3 weak linearity and memory. The analysis indicates that groundwater levels in different monitoring wells vary in response to river-water levels, groundwater withdrawal and seasonal rainfall. Cross-correlation was also divided into three groups. Group 1 shows the highest cross-correlation function (0.49 - 0.54) for a lag time of 0 hours, group 2 intermediate cross-correlation function (0.34 - 0.45), and group 3 the lowest cross-correlation function (0.23 - 0.25). Different cross-correlation functions among the 3 groups are interpreted as an effect of tile distance from the river to the pumping wells.

  • PDF

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.

Probabilistic Characteristics Analysis of Disturbed Function for Geosynthetic-Soil Interface Using Cyclic Shear Tests (동적전단시험을 이용한 토목섬유-흙 접촉면에 대한 교란도함수의 확률특성 분석)

  • Huh, Jungwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.81-91
    • /
    • 2012
  • This paper mainly deals with the analysis of probabilistic characteristics of the disturbed function proposed to predict dynamic behavior of Geosynthetic-soil interface as the lining and cover systems used in waste landfills. Calibration and statistical property estimation of the parameters in the disturbed function model were first performed using many experimental data obtained from a new multi-purpose interface apparatus (M-PIA). In order to analyze the effect due to changes in chemical degradation and normal loads condition, probabilistic properties such as mean, coefficient of variation and distribution type of the disturbed function were evaluated using both the LHS method known to be a very efficient sampling scheme and the estimated statistical property of A and Z. As a result, variation of the disturbed function is found to range approximately from 10~28% according to the level of ${\xi}_D$ and Weibull appears to be the most adequate distribution type at almost all levels of ${\xi}_D$. It is concluded that a probabilistic safety assessment method for Geosynthetic-soil interface considering uncertainty in shear strength can be developed by utilizing probabilistic properties of the disturbed function obtained in this study.

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Probabilistic Approach on Railway Infrastructure Stability and Settlement Analysis

  • Lee, Sangho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2013
  • Railway construction needs vast soil investigation for its infrastructure foundation designs along the planned railway path to identify the design parameters for stability and serviceability checks. The soil investigation data are usually classified and grouped to decide design input parameters per each construction section and budget estimates. Deterministic design method which most civil engineer and practitioner are familiar with has a clear limitation in construction/maintenance budget control, and occasionally produced overdesigned or unsafe design problems. Instead of using a batch type analysis with predetermined input parameters, data population collected from site soil investigation and design load condition can be statistically estimated for the mean and variance to present the feature of data distribution and optimized with a best fitting probability function. Probabilistic approach using entire feature of design input data enables to predict the worst, best and most probable cases based on identified ranges of soil and load data, which will help railway designer select construction method to save the time and cost. This paper introduces two Monte Carlo simulations actually applied on estimation of retaining wall external stability and long term settlement of organic soil in soil investigation area for a recent high speed railway project.

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.

Frequency-dependent electrical parameters of soils as a function of the moisture content (수분함유량에 따른 토양의 전기적 파라미터의 주파수의존성)

  • Lee, Bok-Hee;Kim, Ki-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • The electrical parameters of soils are highly dependent on the various factors such as types of soil, chemical compositions, moisture content, temperature, frequency, and so on. The analysis of soil parameters is of fundamental importance in design of grounding systems. In this paper, we present the experimental results of frequency-dependent impedance, resistivity, permittivity of soils as functions of types of soil and moisture content. The impedance and resistivity of soils are decreased as the moisture content and the frequency increase. In particular, the variation of the soil resistivity with the frequency is pronounced in the conditions of high resistivity and low moisture content. On the contrary, the permittivity of soils are sharply decreased with increasing the frequency below 10kHz and the frequency-dependent permittivity of soils are highly changed in the conditions of high moisture and low resistivity.

A polynomial mathematical tool for foundation-soil-foundation interaction

  • Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2020
  • This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.

Study on Quantifying Erosion Control Function of Forest (산림의 토사유출 방지기능에 관한 연구)

  • Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • This study was carried out to know how erosion control function of forests varies as forests develop in watersheds. The erosion control function among the forest welfare functions can be estimated by comparing sediment yield in stocked with non-stocked area. Sediment yield of reservoirs in stocked area were collected from farmland improvement associations. The sediment yields in non-stocked area were using USLE (Universal Soil Loss Equation) in the same reservoirs. Forests' erosion control function estimated by differences of the sediment yield between stocked and non-stocked area was static model because of no consideration on forest aging. Dynamic model was developed to consider a forest stand age. The model comprises the relationship between average forest age in watershed and sediment yield. The amount of sediment yield was different depending mother rocks. It decreased exponentially according to the forest's grow up. In case of igneous rock, the volume of sediment yield $Y_{ig}=1.4431e\;^{0.023x}$(x=average forest age), metamorphic rock $Y_{me}=4.7115e\;^{0.0694x}$, and sedimentary rock $Y_{se}=1.2808e\;^{0.028x}$.

A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization (지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.