• Title/Summary/Keyword: Soil friction

Search Result 631, Processing Time 0.023 seconds

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF

Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles (항타말뚝과 비교한 현장타설말뚝의 지지력분석)

  • Lee, Seong-Jun;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.75-88
    • /
    • 1997
  • In this study an iterative procedure for the analysis of drilled shafts was proposed on the basis of the load transfer mechanism. Special attention was given to the estimation of bearing capacity of drilled shafts which was compared with driven piles, and then with the results of pile load test. The load displacement at the pile head was calculated by load than sfer curves (t -z curves, q-z curves) by using Vljayvergiya, Castelli and hi -linear models. Bab ed on the analytical results, it is found that the behavior of drilled shafts is different from that of driven piles the smaller the skin friction mobilized at the pile-boil interface, the smaller the development of the bearing capacity. Hence the greater pile head movement is required to mobilize the same mainitride of bearing capacity. This trend is more noticeable in sand than in clay. It is also found that as the length-todiameter ratios increase, the dirtference of ultimate bearing capacity between drilled shafts and driven piles is becoming lass ger in sand, but it is minor in clay.

  • PDF

Analysis of Load Sharing Ratio of Piled Raft Foundation by Field Measurement (현장 계측을 통한 말뚝지지 전면기초의 하중분담률 분석)

  • Jeong, Sang-Seom;Lee, Jun-Hwan;Park, Jong-Jeon;Roh, Yang-Hoon;Hong, Moon-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.41-52
    • /
    • 2017
  • In this study, field measurements were investigated to analyze the load sharing ratio and behavior of piled raft foundation. The field measurements were performed for about 300 days from the start of construction. The geometry of the raft is $3.1m{\times}3.1m$, and the pre-cast and pre-bored pile is 23 m in length and 0.508 m in diameter. Based on the field measurements, the load-settlement relationship of the piled raft foundation was obtained, and the load sharing ratio of the pile was converged to 70% at ultimate loading condition. The load sharing ratio of the pile increased as the settlement increased, and this is because the surface friction of the weathered soil, which is at the lower ground, was significantly increased. Based on the results of the field measurements, load transfer curves were obtained and applied to a numerical analysis by using load transfer method.

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.

An Experimental Study on Shear Strength of Saturated Sand (포화사(飽和砂)의 전단강도(剪斷强度)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Hyoung Soo;Park, Young Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.107-113
    • /
    • 1989
  • The purpose of this study is to compare the results of shear-deformation of saturated sand under the 3 dimensional stress with the results of simple torque-shear test already reported, Japaness standard sand, Toyoura sand, was chosen as test sample and the equipments of the department of soil mechancis laboratory of Nihon University were used. The conclusions obtained are as follows. 1). The friction angle of sand (${\phi}$) is proportional to the density regardless of the condition of stress-strain. This is because of the reason that the lower the cell pressure becomes, the larger the volume changes in case of the same density. 2). The value of ${\varphi}$ are variable according to the condition of stress-strain in the same density, and ${\phi}_dTS$ is larger than ${\phi}_dPS$ and ${\phi}_dTC$ when cell pressure is low. 3). ${\phi}_dPS$ is larger then ${\phi}_dTS$, under the same denstiy and same cell pressure. Thus the shear strength of sand is decided according to the condition of stress-strain 4). the relationship between the stress ratio (q/p) and strain increment ration in the plane strain test is linear regardless of the density and the cell pressure of the test sample.

  • PDF

Evaluation of Strain Distribution and Pullout Strength based on Width and Horizontal Spacing of Geosynthetic Strip (띠형 섬유보강재의 폭과 설치간격에 따른 변형률 분포 및 인발강도 특성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • This paper describes large-scale pullout test results of geosynthetic strip, which can be applied in reinforced earth wall with block-type wall facing. The pullout tests are conducted to evaluate the strain distribution, the induced pullout force and the pullout strength. The maximum pullout force is appeared regardless of reinforcement width and normal stress when end displacement is less than 15 mm. The pullout behavior based on horizontal spacing of reinforcement was similar in relationship between pullout force and end displacement. The strain distribution and pullout force distribution of the geosynthetic strip are concentrated in the front part of reinforcement, and it appeared clearly in higher normal stress condition This means that the pullout behavior of geosynthetic strip is affected by the bond between soil and friction resistance reinforcement according normal stress. Therefore, the pullout resistance design is reasonable when pullout behavior of geosynthetic strip should be evaluated by effective length considering tensile characteristic.

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.