• Title/Summary/Keyword: Soil friction

Search Result 631, Processing Time 0.027 seconds

Friction Properties between Fiber-Mixed Soil and Geogrid by Shear Friction Tests (전단마찰시험에 의한 섬유혼합토와 지오그리드 사이의 마찰 특성 평가)

  • 조삼덕;김진만;이광우;안주환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.813-820
    • /
    • 2003
  • The shear friction tests using large direct shear test units were performed to evaluate the friction properties of fiber-mixed soil. The used materials and test conditions were flowing. Soils : SM and ML; mixing fibers : three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm), reinforcement : geogrid; mixing ratio:0.2% and 0.3%; degree of compaction : 85% and 95%. In the test results, the reinforcing effect of fiber mixed soil was confirmed.

  • PDF

A study on the Measurement of Interface Friction between Soils and Fibers (흙과 섬유의 상호마찰 특성의 측정에 관한 연구)

  • 장병욱;서동욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.467-472
    • /
    • 1998
  • The interface friction angle between soil and fibers is important to evaluate improvement of the shear strength on fiber mixed soils. Direct shear test and pullout tort conducted by an apparatus made specially for the purpose of this study, was analyzed to know how fiber and soils affect on interface friction angle. By the results, The value of interface friction angle of sandy soils is larger than that of clayey soils. As a diameter of fiber is large, the value of friction coefficient of sandy soil is increase and that of clayey soil is decrease. An interface friction angle of well graded soil is larger value than that of uniform graded soil

  • PDF

Estimation of Friction Angle of Rubble Mound by Centrifuge Model Tests (원심모형시험에 의한 사석재의 내부마찰각 추정)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, GiI-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.153-159
    • /
    • 2002
  • This paper is an experimental work of estimating friction angle of very coarse grained soil such as rubble mound by performing laboratory experiments. Two crushed rocks of rubble mound were used for tests. Triaxial compression tests with drained conditions were performed to measure friction angles of soils prepared by mixing the crushed soil having an identical coefficient of uniformity with different maximum grain size distribution. Centrifuge model experiments with those soils were also performed to measure angle of repose and to estimate friction angle of soil from measuring the slope of slip line in the active stress state. Model tests were carried out by changing the G-levels of 1G and 50G. From triaxial compression tests, the measured value of friction angle of soil is in the range of $41{\sim}57^{\circ}$. The measured value of repose angle is in the range of $32{\sim}35^{\circ}$. The values of friction angle are found not so sensitive to the maximum grain size of soil as long as the coefficient of uniformity is identical. Estimated value of friction angle from measuring the slope of slip line in the active stress state is in the range of $30{\sim}46^{\circ}$. Thus, the estimated angle of friction are found to be greater in the order of the measured angle of repose, the estimated value from the slope of active state, and triaxial compression test results. On the other hand, the measured values of friction angle from triaxial tests were compared with empirical equations, based on the relation between friction angle and void ratio. Equations proposed by Helenelund(l966) and Hansen(1967) found to be relatively reliable to estimate friction angles of soil.

  • PDF

Evaluation of Weathered Granite Soil l Geogrid Friction Properties and Pull out Test (화강 풍화토/지오그리드 인발시험 및 마찰특성 평가)

  • 조삼덕;김진만
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.87-100
    • /
    • 1996
  • The pull -out test has been used to investigate the friction properties between soil and grid type geosynthetics which is useful to measure the passive bearing resistance as well as the skin friction. In this paper, the friction properties between geogrid and a weathered granite soil are investigated by performing various pull-out tests. From the test results, a rational pull out test equipment and test method is suggested by evaluating the effects of major factors (such as geogrid width, location of soil box facing, vertical loads and pulll -out displacement rate, etc.) on pull -out test results.

  • PDF

Experimental Study on Reinforcement Effectives of Soil Shear Strength by Bamboo(Substitute Materials Simulating a Root System) -Analysis caused by Simple Shear Test under Soil Suction Control- (대나무(대체근계)의 토질강도보강효과에 대한 실험적 연구 -토양수분제어하의 단순전단시험에 의한 해석-)

  • Lee, Chang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • In this paper, reinforcement of soil shear strength by bamboo(substitute materials simulating a root system) are evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\Phi}$)), using simple shear tester which clearly depicts shear deformation and controls soil suction. The results show that the internal friction angle does not change under various soil suction conditions but the apparent cohesion, which reach a peak in suction of 45cm$H_2O$ near critical capillary head, is effected by soil suction. And the reinforcement of soil strength by bamboo are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by bamboo reached a peak in suction 45cm$H_2O$ too.

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

A new design chart for estimating friction angle between soil and pile materials

  • Aksoy, Huseyin Suha;Gor, Mesut;Inal, Esen
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Frictional forces between soil and structural elements are of vital importance for the foundation engineering. Although numerous studies were performed about the soil-structure interaction in recent years, the approximate relations proposed in the first half of the 20th century are still used to determine the frictional forces. Throughout history, wood was often used as friction piles. Steel has started to be used in the last century. Today, alternatively these materials, FRP (fiber-reinforced polymer) piles are used extensively due to they can serve for long years under harsh environmental conditions. In this study, various ratios of low plasticity clays (CL) were added to the sand soil and compacted to standard Proctor density. Thus, soils with various internal friction angles (${\phi}$) were obtained. The skin friction angles (${\delta}$) of these soils with FRP, which is a composite material, steel (st37) and wood (pine) were determined by performing interface shear tests (IST). Based on the data obtained from the test results, a chart was proposed, which engineers can use in pile design. By means of this chart, the skin friction angles of the soils, of which only the internal friction angles are known, with FRP, steel and wood materials can be determined easily.

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.

Numerical Evaluation of Skin Friction of Barrette Piles by Aspect Ratio and Soil Strength Changes (바렛말뚝의 형상비와 지반 강성에 따른 주면마찰력의 수치해석적 평가)

  • Chae-Min, Kim;Byeong-Han, Jeon;Jun-Seo, Jeon;Tae-Hyung, Kim;Jeong-Pyo, Choi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2022
  • In this study, the effect of aspect ratio and soil strength on the skin friction for barrette pile was evaluated using numerical analysis. The back analysis was conducted to obtain the friction coefficient between pile and soil using the experimental results of the static pile load test for the barrette pile installed at OOsite in Busan. A total of 36 simulations for the static pile load test were also conducted with respect to various aspect ratios and soil strengths. It was found that the skin friction increases as the aspect ratio increases and the change in increasing rate was remarkable near the ultimate skin friction. In addition, the effect of aspect ratio on the skin friction was investigated when the strength of soil at pile tip was varied.

Pile Design for Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • 윤여원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.07a
    • /
    • pp.141-154
    • /
    • 1999
  • Under the compressible circumstance of a soil deposit, the soil move downward relative to the pile. The down drag force requires higher point bearing and causes failure of a pile from time to time. In this paper the mechanism of negative skin friction on a pile, design and reduction of the negative friction is reviewed.

  • PDF