• Title/Summary/Keyword: Soil factor

Search Result 2,003, Processing Time 0.033 seconds

Mechanical Characteristics and Compressibility of Light-Weighted Foam Soil (경량혼합토에 대한 압축성 및 역학적 특성)

  • 윤길림;김병탁;박수용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.673-680
    • /
    • 2002
  • The mechanical characteristics and compressibility of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit-weight and increase compressive strength. For this purpose, the unconfined compression tests and triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and confining stresses. The test results of LWFS indicated that the stress-strain relationship and the compressive strength are strongly influenced by the cement contents rather than the intial water contents of the dredged soils. In this study, the normalized factor considering the ratio of initial water contents, cement contents, and foam contents is suggested to evaluate the relationship between compressive strength and normalized factor.

  • PDF

Draft Guideline Matching the Treatment Technology to the Soil Contaminated Site Based on the Site Properties in Korea (국내 부지 특성을 고려한 오염토양 정화기술매칭기준안)

  • Lee, Jae-young;Lee, Minhee;Yu, Mokryun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.1-13
    • /
    • 2016
  • The programmable logic array to match the treatment technology to the soil contaminated site based on the site properties in Korea was developed. Based on the previous technology screening system of FRTR (Federal Remediation Technology Roundtable) in USA, total 9 evaluation factors indicating the site characteristics were used for the technology matching process and 8 factors among them were quantitatively weighed in the order of importance. The class interval for each evaluation factor was linearly distributed to give the weighed score and 8 scores were summed up to prioritize the treatment technology. The optimal treatment technology for a specific site was determined according to the total score acquired from 8 evaluation factors used in this technology matching process. The reliability test for the developed technology matching system was done by using information of two real cleanup sites in Korea, suggesting that this guideline will be available to determine the most effective treatment technology to cleanup the soil contaminated site and also to assist the government or the company to design a successful and cost-effective site cleanup plan in Korea.

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Effects of Soil Environments by Location on the Cambium Electric Resistance of Pinus thunbergii in Urban Park and Open Space (도시공원녹지의 입지별 토양특성이 곰솔의 형성층 전기저항에 미치는 영향)

  • Park, Seung-Burm;Nam, Jung-Chil;Kim, Seok-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The purpose of this study is to propose rational methods in order to maintain vegetation condition and soil environment based on the analysis of tree growth in relation to the soil environment, which is one of the most significant environmental factors on vegetation condition in urban parks and open spaces. The result of the study can be described as below;The soil on every study site had strong acidity. In particular, study sites around industrial district and central business district showed extreme soil acidity. Therefore, soil management system is needed in urban parks and green spaces around those areas. Among Cambium Electric Resistance classified by locations of urban parks and open spaces, one in the costal area was the lowest. The Cambium Electric Resistance in the industrial area was the highest. Therefore, soil condition and locational environment in the industrial area are highly related to the Cambium Electric Resistance. Among the factors, which affect Cambium Electric Resistance in different locations, inorganic content was found to be the main factor in all of the study sites. Inorganic content was an important factor to the Cambium Electric Resistance in study sites located in industrial and central business districts. In the study sites located in costal area, Soil acidity was found to be other important factors that affect Cambium Electric Resistance. To improve the soil acidity, soil buffering ability should be improved from activating microorganisms in the soil by using lime and organic material, Since it takes a long time to make a change in the soil structure, well planed maintenance system is required by mid-term or long-term plans.

Numerical Analysis of Effects of the Physical Properties of Soil and Contaminant Materials on In-situ Soil Remediation Using Vertical Drain (토양 및 오염물질의 물성치가 연직배수재에 의한 현장오염정화에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The properties of contaminated soil, contaminants and elapsed time are important considering factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one ($C/C_0$) with time and spatial changes in contaminated area which are embedded with vertical drains. The contaminant concentration ratio ($C/C_0$) is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil, temperature in ground, unit weight and viscosity of contaminants by using FLUSH1 model modified from FLUSH. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation in vertical drain system is the effective diameter of contaminated soil. It also shows that the next important factors are the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants and density of soil, in order. However, the others except the effective diameter of contaminated soil are insignificant to the soil remediation.

  • PDF

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Effect of Cover Crop Aruncus dioicus var. kamtschaticus on Reducing Soil Erosion (눈개승마 피복이 토양유실 저감에 미치는 영향)

  • Kim, Hak-Koo;Kim, Je-Su
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • The purpose of this study was to investigate the effects of Aruncus dioicus on annual soil erosion reduction effect. Based on the measured soil erosion data, the cover factor of RUSLE was calculated. Comparing calculated the cover factor and Chewings fescue cover factor for soil erosion reduction, It found that cover crop Aruncus dioicus of reducing soil erosion was effective. The amount of soil erosion according to the type of Aruncus dioicus covering was 2.22 Mg/ha, Chewings fescue was 1.85 Mg/ha, 10.60 Mg/ha was produced in the Bare ground. Cover factor of Aruncus dioicus was $0.09{\pm}0.03$ according to the type of covering, Chewings fescue was $0.08{\pm}0.03$, Bare ground was $0.35{\pm}0.10$. Weeds control Bare ground was $0.83{\pm}0.14$. The results of the variance analysis of the cover factor for each covering were different according to the cover type. As a result of the classification of the same group through post - analysis, it was found that the Aruncus dioicus and Chewings fescue were similar to each other. Therefore, the Aruncus dioicus was effective to reduce the soil erosion to the extent that it was comparable to the Chewings fescue.

Assessment factors for the Selection of Priority Soil Contaminants based on the Comparative Analysis of Chemical Ranking and Scoring Systems (국내.외 Chemical Ranking and Scoring 체계 비교분석을 통한 우선순위 토양오염물질 선정을 위한 평가인자 도출)

  • An, Youn-Joo;Jeong, Seung-Woo;Kim, Tae-Seung;Lee, Woo-Mi;Nam, Sun-Hwa;Baek, Yong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.62-71
    • /
    • 2008
  • Soil quality standards (SQS) are necessary to protect the human health and soil biota from the exposure to soil pollutants. The current SQS in Korea contain only sixteen substances, and it is scheduled to expand the number of substances. Chemical ranking and scoring (CRS) system is very effective to screen the priority chemicals for the future SQS in terms of their toxicity and exposure potential. In this study, several CRS systems were extensively compared to propose the assessment factors that required for the screening of soil pollutants The CRS systems considered in this study include the CHEMS-1 (Chemical Hazard Evaluation for Management Strategies), SCRAM (Scoring and Ranking Assessment Model), EURAM (European Union Risk Ranking Method), ARET (Accelerated Reduction/Elimination of Toxics), CRSKorea, and other systems. The additional assessment factors of CRS suitable for soil pollutants were suggested. We suggest soil adsorption factor as an appropriate factor of CRS system to consider chemical transport from soil to groundwater. Other factors such as soil emission rate and cases of accident of soil pollutants were included. These results were reflected to screen the priority chemicals in Korea, as a part of the project entitled ‘Setting the Priority of Soil Contaminants'.

Analysis of Within-Field Spatial Variation of Rice Growth and Yield in Relation to Soil Properties

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.221-237
    • /
    • 2005
  • For developing the site-specific fertilizer management strategies of crop, it is essential to know the spatial variability of soil factors and to assess their influence on the variability of crop growth and yield. In 2002 and 2003 cropping seasons within-field spatial variability of rice growth and yield was examined in relation to spatial variation of soil properties in the· two paddy fields having each area of ca. $6,600m^2$ in Suwon, Korea. The fields were managed without fertilizer or with uniform application of N, P, and K fertilizer under direct-seeded and transplanted rice. Stable soil properties such as content of clay (Clay), total nitrogen (TN), organic mater (OM), silica (Si), cation exchange capacity (CEC), and rice growth and yield were measured in each grid of $10\times10m$. The two fields showed quite similar spatial variation in soil properties, showing the smallest coefficient of variation (CV) in Clay $(7.6\%)$ and the largest in Si $(21.4\%)$. The CV of plant growth parameters measured at panicle initiation (PIS) and heading stage (HD) ranged from 6 to $38\%$, and that of rice yield ranged from 11 to $21\%$. CEC, OM, TN, and available Si showed significant correlations with rice growth and yield. Multiple linear regression model with stepwise procedure selected independent variables of N fertilizer level, climate condition and soil properties, explaining as much as $76\%$ of yield variability, of which $21.6\%$ is ascribed to soil properties. Among the soil properties, the most important soil factors causing yield spatial variability was OM, followed by Si, TN, and CEC. Boundary line response of rice yield to soil properties was represented well by Mitcherich equation (negative exponential equation) that was used to quantify the influence of soil properties on rice yield, and then the Law of the Minimum was used to identify the soil limiting factor for each grid. This boundary line approach using five stable soil properties as limiting factor explained an average of about $50\%$ of the spatial yield variability. Although the determination coefficient was not very high, an advantage of the method was that it identified clearly which soil parameter was yield limiting factor and where it was distributed in the field.