• Title/Summary/Keyword: Soil enrichment culture

Search Result 92, Processing Time 0.027 seconds

Biodegradation of fluorene and bioremediation study by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated soil (PAHs 오염토양에서 분리된 Sphingobacterium sp. KM-02를 이용한 Fluorene 분해 및 토양복원 연구)

  • Nam, In-Hyun;Chon, Chul-Min;Kim, Jae-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.74-81
    • /
    • 2011
  • The fluorene-degrading strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near a mineimpacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in soil matrix was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil.

Characterization of Biological Treatment by an Isolated Phenol-Degrading Bacterium (페놀분해세균의 분리 및 생물학적 처리 특성)

  • 송형의;김진욱
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.54-62
    • /
    • 1998
  • 20 bacterial strains capable of growing on phenol minimal medium were isolated from soil and wastewater by the enrichment culture technique, and among them, one isolate which was the best in the cell growth was selected and identified as Bacillus sp. SH3 by its characteristics. Strain SH3 could grow with phenol as the sole carbon source up to 15 mM, but did not grow in minimal medium containing above 20 mM of phenol. The optimal conditions of temperature and initial pH for growth and phenol degradation were 30$^{\circ}$C and 7.5, respectively. This strain could grow on various aromatic compounds such as catechol, protocatechuic acid, gentisic acid, o-, m-, p-cresol, benzoic acid, p-hydroxybenzoic acid, anthranilic acid, phenyl acetate and pentachlorophenol, and the growth-limiting log P value of strain SH3 on organic solvents was 3.1. In batch culture, strain SH3 degraded 97% of 10 mM phenol in 48 hours. In continuous culture under the conditions of 20 mM of influent phenol concentration and 0.050 hr$^{-1}$ of dilution rate, the treatment rate of phenol was 94%.

  • PDF

Identification and Optimal Characteristics of Burkholderia sp. SKK381 Degrading Benzene (Benzene 분해 Burkholderia sp. SKK381 분리 및 최적 특성)

  • 강동일;김철경;고창웅;진환준;김장규;김남기
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.589-593
    • /
    • 2000
  • Several bacterial strains growing on benzene minimal medium were isolated from soil by enrichment culture, Burkholderia sp. SKK381 was identified and selected. In order to determine the ability of Burkholderia sp. SKK381 to degrade benzene. Changes in substrate concentration, cell growth, and pH were monitored from start-up in bath culture. At 30$^{\circ}C$, 1000 ppm of benzene was degraded 100% within 28hours. Cell growth conditions were best at an initial pH of 7.0 and a benzene concentration of 1000 ppm at 30$^{\circ}C$.

  • PDF

Characterization of Extracellular Protease of Bacillus sp. WRD-1 Isolated from Soil (토양으로부터 분리한 Bacillus sp. WRD-1이 생산하는 Extracellular Protease의 특성)

  • Ok, Min;Kim, Min-Seok;Seo, Won-Seok;Cha, Jae-Young;Cho, Young-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.329-333
    • /
    • 2000
  • Alkaline bacterium producing a high pro-tease activity at low temperature was isolated by using enrichment culture from soil samples and identified as Bacil-lus sp. WRD-1 Cell growth was maximal at 10 hours and the optimal initial pH and culture time of culture condition for enzyme production was pH 7 and 10 hours, respectively. Temperature range of high enzyme activity were $10~40^{\circ}C$. The optimal pH and temperature for the enzyme activity were pH9 and $30^{\circ}C$.

  • PDF

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Optimal Resolution of L-Carnitine from Racemic DL-Carnitine by Enterobacter sp. Assimilating D-Carnitine

  • Hwang, Ki-Chul;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.318-322
    • /
    • 1997
  • In order to isolate a microorganism having preferential degradation of D-carnitine from DL-carnitine, a bacterium assimilating D-carnitine as a sole carbon and energy source was isolated from soil by enrichment culture and partially identified as Enterobacter sp. Also, a mutant having lessened L-carnitine decomposition rates was selected with nitrosoguanidine mutagenesis, which led to decrease the specific activities of carnitine dehydrogenase (7.6-fold) and ${\beta}$-hydroxybutyrate dehydrogenase (9.5-fold) as compared to the wild strain. Meanwhile, optimal culture conditions for optical resolution of DL-carnitine were investigated. Under optimal conditions, 3.53 g/l L-carnitine was obtained from 20 g/l DL-carnitine, which corresponded to 35.3% L-carnitine yield and 97.9% optical purity.

  • PDF

Isolation and Identification of Aldehyde Producing Methanol Utilizing Yeast (메탄올 자화성 효모의 분리, 동정 및 Aldehyde 생산)

  • 윤병대;김희식;권태종;양지원;권기석;이현선;안종석;민태익
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.630-636
    • /
    • 1992
  • Hansenula nonfermentans KYP-l was selected and identified from 19 methanol utilizing yeasts isolated from soil samples by the enrichment culture technique. This strain showed a high cell concentration and a high aldehyde production. Aldehyde production was carried out in a resting cell system using methanol utilizing yeast as a biocatalyst. The molar yield of acetaldehyde was the highest among the aldehyde investigated, and the maximum amount of aldehyde was produced by cells obtained from a 40 hours' culture.

  • PDF

Characterization of Organochlorine Insecticide Endosulfan-Degrading Bacterium Isolated from Seaside Sediment (갯벌에서 분리한 유기염소계 살충제 Endosulfan 분해 세균의 특성)

  • Park, Mi-Eun;Kim, Young-Mog;Chung, Yong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.207-215
    • /
    • 2011
  • An endosulfan degrading bacterial strain, K-1321, was isolated by endosulfan-enrichment culture from a seaside sediment collected at Dadaepo Beach, Busan, Korea. The strain was identified as a Serratia sp. based on the results of morphological, biochemical and 16S rDNA homology analyses. Serratia sp. K-1321 was able to completely degrade 50 ppm endosulfan in culture media and soil within 6 weeks at $25^{\circ}C$. GC/MS analysis revealed that endosulfan diol was an intermediate of the bacterial endosulfan degradation. Considering the above results, we concluded that Serratia sp. K-1321 utilized endosulfan as a carbon source and metabolized endosulfan via a less toxic pathway, such as the formation of endosulfan diol as an intermediate.

Oxidation of Alkane Derivatives by Corynebacterium sp. (Alkane 유도체의 미생물학적 산화 제1보)

  • 이종근;이상준
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.185-190
    • /
    • 1983
  • Twelve Microorganisms capable of utilizing diaminododecane were isolated from the soil by enrichment culture technique. Seven strains of these were identified as Corynebacterium. The isolated strains were tested for the ability to utilize as carbon source, 10 different kind of alkane derivatives containing CN, $NH_2$, Cl, and SH groups. Laurylcyanide, dicyanooetane, chlorodecane, and dichlorodecane were not utilized by any of the isolated strains; putrescine dihydrochloride, cadaverine dihydrochloride, diaminododecane, and n-dodecane were utilized by all of the isolated strains; and all of the isolated strains except DAD 2-3 could utilize dodecylmercaptan. The alkane derivatives that did not serve as ,growth substrates were tested further in oxidation tests using resting cell preparation. Alkane derivatives that are being oxidized by all of the isolated strains are laurylcyanide and dichlorodecane. Dicyanooctane was also oxidized by all of the isolated strains except DAD 30L, chlorodecane was the only oxidized by the three isolated strains. The most remarkable substrate that is being oxidized is dichlorodecane containing CN groups diterminally. Evidence obtained with thin layer chromatography of ,ethyl acetate extracts of culture broth of isolated strains grown in some alkane derivatives shows that these alkane derivatives are degraded.

  • PDF

Isolation and Characterization of Diesel Oil Degrading Bacterium, Pseudomonas sp. GENECO 1 Isolated from Oil Contaminated Soil (유류 오염 토양으로부터 분리한 디젤 분해 세균 Pseudomonas sp. GENECO 1의 분리 및 특성 규명)

  • 이종광;김무훈;박형수
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.102-107
    • /
    • 2003
  • With the enrichment culture technique, bacterial strains which degrade diesel oil were isolated from soil contaminated with diesel oil. One of the isolates named GENECO 1 showed the highest activity for emulsification of diesel oil as well as the highest growth rate. This strain, GENECO 1, was identified as a Pseudomonas sp. based on its biochemical, physiological characteristics and 16S rDNA sequences. The optimal cultural conditions for cell growth and oil emulsifying activity of its culture were as follow; $30^{\circ}C$ for temperature, 7.0 for pH. Diesel oil degradation was analysed by the gas chromatography. More than 95% of 1% treated diesel oil were converted into a form no longer extractable by mixed organic solvents after 96 hours incubation.