• Title/Summary/Keyword: Soil dam

Search Result 395, Processing Time 0.029 seconds

Forest Environment Degradation and Rehabilitation of Copper Mine Area in Ashio, Japan (일본 아시오(足尾) 銅鑛山地域의 삼림황폐와 삼림환경 복구사업에 관한 분석)

    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.276-285
    • /
    • 2001
  • This report surveyed degradation of forest environment and rehabilitation in Ashio of Japan. Since 1880, a large scale forestry in this area has been destroyed by sooty smoke, and the local government invested heavily to rehabilitate the damaged forestry and denuded mountains. These degradations are due to complex operations, such as sulfurous acid gas from copper refinery, forest fires, steep slope and disadvantageous climate. The rehabilitation works on degraded forestry(2,399ha) were undertaken by tree planting fur three years from 1897. However, forest degradation and disasters were continued, and the total damaged areas were about 2,400~3,000ha in 1956. A Manual labor method, a Helicopter method and also Combination of manual labor and helicopter method had been adopted to rehabilitation works from 1945 to 1996, while 828.19ha of the degraded mountains was rehabilitated. Total investment for those projects was 80 billion yen. A debris control dam, a soil arresting structure, a vegetation-block, a vegetation sack measures and tree planting have implemented significantly fur the method of rehabilitation. An objective of manual labor works is a complete rehabilitation on each place through 3 stage working. The revived green areas accounted fur 49% of the total, and the entire afforest areas are less than 10%. In coming 25 years, an amount of 21.3 billion yen will be invested to rehabilitate 564ha of degraded mountain lands. However, it is impossible to estimate that how long it will take until the whole degraded mountain lands are completely rehabilitated. Rehabilitation works in Ashio may be applicable to environmental restoration and revegetation in the abandoned coal-mine lands of Korea.

  • PDF

Analysis on the Effect of Spatial Distribution of Rainfall on Soil Erosion and Deposition (강우의 공간분포에 따른 침식 및 퇴적의 변동성 분석)

  • Lee, Gi-Ha;Lee, Kun-Hyuk;Jung, Kwan-Sue;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.657-674
    • /
    • 2012
  • This paper presents the effect of spatially-distributed rainfall on both rainfall-sediment-runoff and erosion or deposition in the experimental Cheoncheon catchment: upstream of Yongdam dam basin. The rainfall fields were generated by three rainfall interpolation techniques (Thiessen polygon: TP, Inverse Distance Weighting: IDW, Kriging) based only on ground gauges and two radar rainfall synthetic techniques (Gauge-Radar ratio: GR, Conditional Merging: CM). Each rainfall field was then assessed in terms of spatial feature and quantity and also used for rainfall-sediment-runoff and erosion-deposition simulation due to the spatial difference of rainfall fields. The results showed that all the interpolation methods based on ground gauges provided very similar hydrologic responses in spite of different spatial pattern of erosion and deposition while raw radar and GR rainfall fields led to underestimated and overestimated simulation results, respectively. The CM technique was acceptable to improve the accuracy of raw radar rainfall for hydrologic simulation even though it is more time consuming to generate spatially-distributed rainfall.

Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis (물수지와 에너지수지 해석에 따른 수문기상성분 평가)

  • Ji, Hee Sook;Lee, Byong Ju;Nam, Kyung Yeub;Lee, Chul Kyu;Jung, Hyun Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.25-35
    • /
    • 2014
  • The objective of this study is to evaluate TOPLATS land surface model performance through comparison of results of water and energy balance analysis. The study area is selected Nakdong river basin and high resolution hydrometeorological components of which spatio-temporal resolution is 1 hr and 1 km are simulated during 2003 to 2013. The simulated daily and monthly depth of flows are well fitted with the observed one on Andong and Hapcheon dam basin. In results of diurnally analysis of energy components, change pattern throughout the day of net radiation, latent heat, sensible heat, and ground heat under energy balance analysis have higher accuracy than ones under water balance analysis at C3 and C4 sites. Especially, root mean square errors of net radiation and latent heat at C4 site are shown very low as 22.18 $W/m^2$ and 7.27 $W/m^2$, respectively. Mean soil moisture and evapotranspiration in summer and winter are simulated as 36.80%, 33.08% and 222.40 mm, 59.95 mm, respectively. From this result, when we need high resolution hydrometeorological components, energy balance analysis is more reasonable than water balance analysis. And this results will be used for monitor and forecast of weather disaster like flood and draught using spatial hydrometeorological information.

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

Simulation of soil moisture on Youngdam Dam basin using K-DRUM (K-DRUM 모형을 이용한 용담댐 유역의 토양수분 변화 모의)

  • Hur, Young Teck;Lim, Kwang Suop;Park, Jin Hyeog;Park, Gu Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.281-281
    • /
    • 2016
  • 기후변화로 인한 기상학적 자연재해로부터 대비하고 안정적인 용수공급을 위해 유역의 다양한 수문 요소들에 대한 분석 필요성이 증가하고 있다. 계절적 강수량의 편차가 큰 우리나라는 유역 통합 물관리가 중요하며, 효율적 수자원 관리와 물안보 확보를 위해 유역내 물순환을 이해하는 것이 중요하다. 유역의 유출을 결정하는 요소들에는 강우, 증발산량, 토양 수분 및 지하수 등이 있으며, 시간적으로는 홍수와 같이 단기에 발생하는 유출과 장기적으로 발생하는 유출이 있다. 장기 유출은 단기 유출에 비해 토양내 수분량이 무시할 수 없을 정도로 영향을 미치게 되므로, 1년 이상의 장기 유출 해석을 위해서는 강우가 발생하지 않는 기간 동안의 토양 수분량 변화와 증발산 영향을 고려할 필요가 있다. K-water에서 자체 개발된 분포형 장단기유출 모델인 K-DRUM은 유역을 격자(grid)단위로 구분하고 각 셀들에 대한 매개변수는 흐름방향도, 표고분포도, 토지이용도, 토지피복도 등을 GIS처리하여 일괄 입력할 수 있도록 함으로써 매개변수 산정과정에서 문제가 되는 경험적인 요인을 제거하였다. 흐름의 구분은 얕은면 흐름, 지표하 흐름, 지하수 흐름으로 구분하여 운동파법과 선형저류법을 적용하였다. 또한 초기 토양함수 자동보정기법으로 실제의 기저유출량을 재현하여 전체적인 유출모의 정확도를 높였으며, FAO-56 Penman-Monteith법을 적용한 증발산량 산정모듈과 Sugawara et al.(1984)이 제안한 개념적 융설 및 적설모듈을 추가하였다. K-DRUM모형을 이용한 유출분석은 용담댐 시험유역을 대상으로 2013년도 1년간의 유출모의를 수행하였다. 입력자료는 용담댐 유역의 지형, 토양 및 토지특성 정보와 시단위 강우 및 기상정보(온도, 바람, 일사 등)를 활용하였다. 분석 결과, 총 관측유출량은 7,151 ㎥/s이고 총 계산유출량 $8,257m^3/s$이며, 관측유출량 대비 계산유출량은 약 115% 정도로 나타났다. 연간 총 강우량은 1303.5 mm로 유역면적 약 $930km^2$을 적용하여 유역 총 강우량을 산정하면 $14,030m^3/s$로서 관측유출량은 유역 총 강우량 대비 51%이고 계산유출량은 59% 정도로 나타났다. 즉 유역 유출율은 약 51% 수준으로 보통의 유역과 유사한 수준이다. 관측된 토양수분량과 K-DRUM 모형의 계산된 토양수분량을 비교하기 위하여 관측 토양수분량의 비율을 이용하여 비교하였다. 모의결과 토양수분은 강우에 의해 변화하며, 관측결과와 유사한 형태로 나타남을 알 수 있었다.

  • PDF

Analyzing the Occurrence Trend of Sediment-Related Disasters and Post-Disaster Recovery Cases in Mountain Regions in N orth Korea Based on a Literature Review and Satellite Image Observations (문헌 및 위성영상에 기초한 북한의 산지토사재해 발생경향 및 복구사례 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Suk Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • This study investigated spatiotemporal trends of sediment-related disasters in North Korea from 1960 to 2019 and post-disaster recovery cases based on a literature review and satellite images. Results showed that occurrence status of sediment-related disasters was initially externally reported in 1995 (during the Kim Jongil era); their main triggering factor was heavy summer rainfall. Furthermore, forest degradation rate was positively correlated with population density (R2 = 0.4347, p = 0.02) and occurrence number of sediment-related disasters was relatively high on the west coast region, where both variables showed high values. This indicates that human activity was a major cause of forest degradation and thus, significantly affected sediment-related disasters in mountain regions. Finally, sediment- related disasters due to shallow landslides, debris flow, and slow-moving landslides were observed in undisturbed forest regions and human-impacted forest regions, including terraced fields, opencast mines, forest roads, and post-wildfire areas, via satellite image analysis. These disaster-hit areas remained mostly abandoned without any recovery works, whereas hillside erosion control work (e.g., treeplanting with terracing) or torrent erosion control work (e.g., check dam, debris flow guide bank) were implemented in certain areas. These findings can provide reference information to expand inter-Korean exchange and cooperation in forest rehabilitation and erosion control works of North Korea.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Transition of Rice Cultural Practices during Chosun Dynasty through Old References II. Investigation of Rice Culture Practice in Ancient China (주요 고농서를 통한 조선시대의 도작기술 전개과정 연구 II. 고대중국의 도작기술 개요 탐색)

  • Lee, Sung-Kyum;Guh, Ja-Ok;Lee, Eun-Woong;Lee, Hong-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.3
    • /
    • pp.280-285
    • /
    • 1991
  • The rice culture techniques of the ancient China which have played a key role directly and indirectly, in development of ancient farming and its techniques of Korea, were established before Christ in terms of dry-farming and the spirit of the farming-first principle. Especially techniques of rice culture were developed by cultivation methods for deep plowing, storage of water and preservation use of soil fertility. Therefore, the techniques of transplanting methods, seeding in rows, use of iron-made farming tools and dam construction for irrigation were advanced. And rice varieties were differentiated to avoid disasters or to supply of rice for various uses in many areas. Also, because north China was the origin of Chinese agriculture in which population density was low and flat land was wide that were the cradle of Chinese agriculture, ‘Hwayungsunubeob’(firing and drawning weed control method) and fallowing were quickened as intensive techniques of rice culture. In connection with the view of agricuture with 'the theory of the cosmic dual forces and the five primary substances' of Han Mooje and Chamwye scholars, the techniques of seeding and selection of crops were gradually developed. From ‘Jeminyosul’ of the 6th century to ‘Wangjongnongseo’ of the 14th century, the techniques of rice culture have been developed continuously and additively, but were not improved thereafter Won dynasty. From this point of time, the time of agriculture in the end of Koryo age and by ‘Nongsajiksul’ were initiated.

  • PDF

Current status of site observations for evapotranspiration and soil moisture content in the K-water dam watershed (K-water 댐 유역 증발산량 및 토양수분량 관측 현황)

  • Cho, Younghyun;Kang, Tae Ho;Lee, Young Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.67-67
    • /
    • 2022
  • 국가 물관리 측면에서 증발산량과 토양수분량은 자연계 손실로서 국내 수자원 총량의 약43%(563억 m3/년)를 차지하며, 수자원의 계획과 개발, 물순환 과정 규명 및 다양한 수재해 분석 등을 위한 수문 요소이다. 정부는 2005년 「수문조사 선진화 5개년 계획」과 2008년 「제1차 수문조사기본계획(2010~2019년)」을 통해 2019년까지 증발산량과 토양수분량 관측소 확대(각각 25개 지점) 기반을 마련하였고 「수자원의 조사·계획 및 관리에 관한 법률」에 따라 매년 공인 수문 자료로 증발산량과 토양수분량을 측정하고 있다. 증발산량과 토양수분량은 댐 유역의 정밀한 물순환 해석에도 매우 중요한 정보로서 현재 K-water에서의 관측은 일부 시험유역(용담댐 유역)의 flux tower에 의한 에디공분산법(Eddy Covariance Method) 및 토양수분 센서(TDR, Time Domain Reflectometery)에 의한 지점 자료의 생산만 각각 이루어지고 있다. 본 연구에서는 K-water 댐 유역의 증발산량 및 토양수분량 관측 현황과 그간 관측된 자료의 특성을 각종 경향성 분석 등과 함께 소개하고자 한다, 증발산량의 경우는 2개소의 flux tower를운영(덕유산 지점 2011년 이후, 용담 지점 2017년 이후)하고 있으며, 토양수분량은 총 7개소(계북, 천천, 상전, 안천, 부귀, 주천 지점 2013년 이후, 장계 지점 2017년 이후)에 TDR센서를 설치, 계측 운영 중이다. 이렇게 관측된 자료는 매년 홍수통제소 주관 관련 전문가 공인심사를 통해 일자료 기준으로 한국수문조사연보에 수록되고 있으며, K-water에서도 연보를 통해 공개된 자료를 기준으로 공공데이터포털(data.go.kr) 등과 연계하여 온라인 자료 서비스 중이다. 한편, 최근 2020년 「제2차 수문조사 기본계획(2020~2029년)」에서는 수자원 위성 개발연구와 연계하여 위성을 활용한 증발산량과 토양수분량 산정 연구의 필요성이 강조되고 있다. 하지만 본 연구에서 살펴본 지점 자료만으로는 댐 유역을 포함한 광역단위의 시계열 공간정보를 생산하기 한계가 있으며, 댐 유역과 국내 전 지역의 공간 시계열 증발산량 및 토양수분량 자료 산정과 활용 방안에 대해 정립하고, 나아가 위성영상을 활용한 댐 유역 증발산량·토양수분량 관측 가이드라인 마련 등을 위해서는 국가적으로 많은 재원의 투입과 노력이 필요한 상황이다.

  • PDF