• Title/Summary/Keyword: Soil chemicals

Search Result 370, Processing Time 0.034 seconds

Applications of Agro-Based Materials for Water Dropwort (Oenanthe stolonifera DC) Organic Farming (미나리 유기재배를 위한 활용자재 시용효과)

  • Ahn, Byung-Koo;Moon, Young-Hun;Kwon, Young-Rip;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • Organic farming is a type of agricultural practices based on naturally occurring processes excluding or strictly limiting the use of synthetic fertilizers, pesticides, and other chemicals. This study was conducted to investigate the influences of agro-based materials, effective microorganisms (EM), liquid silicate (LS), and organic liquid fertilizer (OLF) for water dropwort (Oenanthe stolonifera DC.) cultivation. Soil pH, soil organic matter, and plant available phosphorous decreased with LS application. Exchangeable Ca and Mg decreased with EM application, and electrical conductivity and exchangeable Ca and K decreased with OLF application. Most of essential nutrient contents in water dropwort were reduced with the treatments of LS, EM, and OLF as compared with those in control plot, except nitrogen and phosphorus. However, diseases and insect pests were almost not observed in the water dropwort in the agro-based material application plots, except cluster caterpillar (Spodoptera litura). Productivity of water dropwort tended to be reduced: its higher productivity in the OLF and EM+LS plots and lower in the LS and control plots.

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

A Study on Carbon Footprint and Mitigation for Low Carbon Apple Production using Life Cycle Assessment (전과정평가법을 이용한 사과의 탄소발생량 산정과 저감 연구)

  • Lee, Deog Bae;Jung, Sun Chul;So, Kyu Ho;Kim, Gun Yeob;Jeong, Hyun Cheol
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • Carbon footprint of apple was a sum of $CO_2$ emission in the step of manufacturing waste of agri-materials, and greenhouse gas emission during apple cultivation. Input amount of agri-materials was calculated on 2007 Income reference of Apple by Rural Development Administration. Emission factor of each agri- materials was based on domestic data and Ecoinvent data. $N_2O$ emission factor was based on 1996 IPCC guideline. Carbon dioxide was emitted 0.64 kg $CO_2$ to produce 1 kg apple fruit, and carbon dioxide was emitted 43.6% in the step of the manufacturing byproduct fertilizer, 1.3% in the step of the manufacturing single fertilizer, 4.7% in the step of the manufacturing composite fertilizer, 6.3% in the step of the manufacturing agri-chemicals, 14.6% in the step of the manufacturing fuel, 11.5% in the step of the fuel combustion, 17.7% of $N_2O$ emission by nitrogen application and 0.18% of disposal of agri-materials. It is needed for farmers to use fertilization recommendation based on soil testing (soil. rda.go.kr) because scientific fertilization is a major tools to reduce carbon dioxide of apple production. The fertilization recommendation could be also basic data in Measurable-ReporTablele-Verifiable (MRV) system for carbon footprint.

Effect of chemical concentrations on strength and crystal size of biocemented sand

  • Choi, Sun-Gyu;Chu, Jian;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.465-473
    • /
    • 2019
  • Biocementation due to the microbially induced calcium carbonate precipitation (MICP) process is a potential technique that can be used for soil improvement. However, the effect of biocementation may be affected by many factors, including nutrient concentration, bacterial strains, injection strategy, temperature, pH, and soil type. This study investigates mainly the effect of chemical concentration on the formation of calcium carbonate (e.g., quantity, size, and crystalline structure) and unconfined compressive strength (UCS) using different treatment time and chemical concentration in the biotreatment. Two chemical concentrations (0.5 and 1.0 M) and three different treatment times (2, 4, and 8 cycles) were studied. The effect of chemical concentrations on the treatment was also examined by making the total amount of chemicals injected to be the same, but using different times of treatment and chemical concentrations (8 cycles for 0.50 M and 4 cycles for 1.00 M). The UCS and CCC were measured and scanning electron microscopy (SEM) analysis was carried out. The SEM images revealed that the sizes of calcium carbonate crystals increased with an increase in chemical concentrations. The UCS values resulting from the treatments using low concentration were slightly greater than those from the treatments using high concentration, given the CCC to be more or less the same. This trend can be attributed to the size of the precipitated crystals, in which the cementation efficiency increases as the crystal size decreases, for a given CCC. Furthermore, in the high concentration treatment, two mineral types of calcium carbonate were precipitated, namely, calcite and amorphous calcium carbonate (ACC). As the crystal shape and morphology of ACC differ from those of calcite, the bonding provided by ACC can be weaker than that provided by calcite. As a result, the conditions of calcium carbonate were affected by test key factors and eventually, contributed to the UCS values.

Analysis for explosives in contaminated soil using the electrochemical method (폭발물 오염토양에서 전기화학법을 이용한 RDX 흔적량의 분석)

  • Ly, Suw Young
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.129-134
    • /
    • 2008
  • Cyclic voltammetry (CV) and square wave stripping voltammetry (SW) analysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using the double-stranded ds calf thymus (DNA) mixed in carbon nanotube paste electrode (PE) were provided. The optimum analytical conditions were determined and the peak potential was 0.2 V vs. Ag/AgCl. The linear working ranges of CV (50-75 ug/L) and SW (5-80 ng/L) were obtained. The precisions of RSD in the 10 ug/L was 0.086% (n=15) and the detection limit was 0.65 ng/L ($2.92{\times}10^{-12}M$) (S/N=3) with 300 s adsorption time at the optimum condition. The method was used to determine the presence of explosive chemicals in contaminated soil samples.

Studies on the Factors Affecting Barley Injury Caused by Herbicides in Drained Paddy Field (제초제에 의한 답리작맥 약해발생 요인구명에 관한 연구)

  • Whan-Seung Ryang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.147-157
    • /
    • 1973
  • I. The effect of excessive soil moisture(at the time of germination) on germination of barley and crop damage of herbicides was investigated. Machete(Butachlor) and TOK(Nitrofen) were treated, respectively, at the rate of 150g ai/10a on each pot whose different soil moisture content was controlled by suppling 30, 40, 50 and 60ml of water per 100gr of air-dried soil, respectively. The results are summarized as follows: 1. Excessive soil moisture beyond field moisture capacity caused great inhibition, from 20 to 100%, of the germination of barley even at untreated pots(check pots). Also, further development of root and growth of barley were greatly inhibited even though the seeds germinated. 2. The same tendency in inhibition of germination and growth as at untreated pots was observed at treated pots, too. As a whole, however, the damage were heavier at treated pots. II. Wanju naked spring barley was seeded on four different soils and covered with soil to a depth of 1 em, and then Machete, TOK, Saturn and HE-314 were treated at the rate of 180, 150 and 200, 150, and 250g ai/10a, respectively, and the effect of soil texture on crop damage of the herbicides was investigated. The results are summarized as follows: 1. Machete(emulsion and granule, at 180g ai/10a) The degree of crop damage was quite different from one soil texture to another: while almost no crop damage was observed on a clay loam soil regardless of the type of formulation, the damage became heavier as the soil texture became sandier as sandy clay loam, volcanic ash loam and sandy loam, and great inhibition of growth was observed on sandy loam soil. In general heavier damage was caused by the application of emulsion than by granular formulation. 2. TOK(Wettable powder, at 150, 250g ai/l0a) Almost the same tendency as in the application of Machete was observed, and the damage became heavier as the application rate increased. 3. Saturn(at l50g ai/l0a) No great difference in crop damage among soil textures was observed. 4. HE-3l4(at 250g ai/l0a) Almost no difference in crop damage among soil textures was observed at this rate of 250g ai/l0a. III. To study a difference of crop damage on soil covering depth(4 levels), 9 herbicides(TOK, MO, HE-3l4, Machete, Saturn, Simetryne, Simazine, Gesaran, Lorox) were treated on the pots with two different soils, and the effect of soil covering depth on crop damage of the herbicides was investigated. The results obtained in this experiment are summarized as follows: Light Clay Soil 1. The growth of barley in relation to depth of soil covering at check pots followed the order vigorous to weak; lcm>1.5cm>0.5cm>0cm. And in case of 0 and 0.5cm covering the growth of barley was very poor. 2. The damage at 0 and 0.5cm covering at treated pots was very severe, but Saturn, Machete, MO and TOK at 100 to l50g ai/l0a, respectively and He-3l4 at 250 to 375g ai/l0a were relatively safe to barley at the depths of lcm and above. 3. Simazine, Lorox and Simetryne caused slight damage even at 1.5cm covering. Sandy Loam Soil The growth of barley in relation to depth of soil covering at untreated pots followed the order, from vigorous to weak; 1.5cm 0.5cm 3cm 5cm. While MO was safe to barley at 1.5cm covering, for other chemicals more than 3cm covering was require for safe use. Machete and Saturn at 100g ai/l0a, and HE-3l4 at 250g ai/l0a was relatively safe at more than 3cm covering. Simazine, Lorox, Simetryne and Gesaran were unsafe on sandy soil regardless of covering depth.

  • PDF

Chemical Characteristics and Water Dispersible Colloid Content of Jeju Citrus Orchard Soils (제주도 감귤원 토양의 화학적 특성과 물 분산성 콜로이드 함량)

  • Oh, Sang-Sil;Chung, Jong-Bae;Hyun, Hae-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Water-dispersible colloids are suspected to facilitate transport of contaminants to groundwater. This study evaluated some soil chemical properties in relation to the stability of colloids in soils of Jeju citrus orchards. Thirty surface soil samples were collected, and pH, organic matter content oxalate-extractable Al and Fe contents, and water-dispersible colloid content were measured. In soils of higher pH, water-dispersible colloid contents were higher. The stability of colloids was found to be significantly promoted at pH above 5$\sim$6. Since organic matter can act as a flocculant organic matter content significantly enhanced the colloid stability. In soils of less than 5% organic C, water-dispersible colloid content was expected to be significantly higher. In soils of higher oxalate-extractable Al and Fe contents, colloids remaining in suspension were lower. This indicated that amorphous oxides and hydroxides play important stabilizing roles in soil structure and can stabilize soil clay against dispersion. Therefore in soils of higher pH, lower organic matter, and lower amorphous clay minerals, the stability of water-dispersible colloids and the potential of colloid-mediated transport of organic chemicals to groundwater could be higher.

Influence of Repeated Application of Chlorotharonil and Cellulose on the Bacterial Population in Soil Suspension Culture (토양현탁액중(土壤懸濁液中)에서 Cellulose와 살균제(殺菌濟) Chlorotharonil연용(連用)이 세균(細菌)의 밀도변화(密度變化)에 미치는 영향(影響))

  • Lee, Sang-Bok;Sato, Kyu;So, Jae-Don
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 1994
  • This study was conducted to find out the influence of single and/or repeatedly combined application of cellulose and chlorotharonil(TPN) on bacterial population and dissipation of these chemicals by microorganism in the soil suspension culture. 1. The number of total bacteria and Gram-negative bacteria were rapidly increased for 1st week, after the time, decreased in the single application but maintained in repeatedly combined application for 5th week and that were higher at combined application of TPN and cellulose than at single application of these. 2. TPN-degrading bacteria were gradually increased by the repeated application of TPN, and elevated the increasing extents of those with the repeatedly combined application of cellulose with TPN. 3. Cellulose-degrading bacteria showed the peak at 1st week, and was increased in the repeated application of cellulose, but the bacteria was decreased in the repeatedly application of TPN with cellulose. 4. The dissipation of TPN were faster at the combined application of both than at the single application of TPN, wheras that was delayed by the repeatedly combined application. 5. The content of reducing sugar was rapidly increased at 1st week and after 4th week except for the TPN single application, that was higher in the combind application than the cellulose single, but there was no difference between them.

  • PDF

The State of Mulberry Cultivation and It's Development in High Land of Benguet Province, Philippines (필리핀 벤규트의 고지대 뽕밭현황 및 개선방안)

  • Ryu, Keun Sup
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.85-100
    • /
    • 1996
  • The Studies were conducted to provide the state of mulberry cultivation and it's development in Banguet province (high land) of Philippines. Philippines initiated the sericulture industry with the technical asistance of Japan in 1974 and established mulberry field and sericultural facilities with technical asistance of Korea in 1990 and 1995. The required average of 100 to 150mm per month is not available during the dry season from December to March. Therefore mulching with grass which is available abundantly in the Philippines should be established to conserve moisture, to control soil erosion, surface ran-off and also to increase the humus content in the soil. In chemical properties of mulberry field, the pH value of soil is 4.7, organic matter 1.6%, and available phosphorus 6ppm. Therefore, all fields should do liming and be applied compost. To improve leaf yield for mulberry planted under partial shade area of pine trees, more pruning of pine tree should be done for good sunshining of mulberry, more liming and compost should be applied to improve acidic soil. To control the leaf roller, DDVP and KAFIL are able to be used. When spraying insecticides to control mulberry insect pests, care should be taken to consider the residual effects of chemicals on the leaf. Leaf should be fed to silkworms only after the leaves are free of any residual effects.

  • PDF

Studies on the Development of Acid Tolerant and Superior Nitrogen Fixation Symbionts for Pasture on Hilly Land -III. Inoculation Effect of R. meliloti "YA03" to Alfalfa on Hilly Acid Soil (야산(野山) 목초지용(牧草地用) 내산성(耐酸性) 우수(優秀) 질소고정균주(窒素固定菌株) 개발(開發) -III. 야산(野山) 개간지(開墾地)에서 R. meliloti "YA03"의 알팔파 접종효과)

  • Kang, Ui-Gum;Choi, Ju-Hyeon;Lee, Jae-Saeng;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.219-224
    • /
    • 1991
  • An acid tolerant R. meliloti "YA03" which was characterized through both acidified tube and pot soil experiment, was examined on its inoculation effect to alfalfa[Medicago sativa (L.)]cv. Vernal on hilly acid soil. It was conducted for 2 years to evaluate inoculation residual effect and there were two-fertilizer factors of nitrogen(0.8kg/10a) and lime(0,162kg/10a)as urea and $Ca(OH)_2$, respectively. The results obtained were summarized as follows : 1. In the 1st-year experiment, YA03 inoculated without nitrogen and lime application showed higher symbiotic effectiveness than check strains, YA026 and Rm2011 in nodule mass, $N_2$-fixing activity, and dry matter yield, but with N 8kg/10a application lower effectiveness than Rm2011. 2. In the 2nd-year experiment, Alfalfa dry matter yield by YA03 inoculation with N application(without lime) was 74% higher than that(276 kg/10a) in the 1st year, and the value showed 166%, 20%, and 21% increments as compared with noninoculated control(180kg/10a). YA026(399kg/10a), and Rm2011(397kg/10a), respectively. 3. In the 2nd-year experiment of N applicated plote(without lime), especially, YA03 showed higher shoot nitrogen(7.7kg N/10a/Yr.) fixed and soil rhizobial population($1{\times}10^4\;cells/g.\;soil$) than check strains. 4. On the basis of lime application, application effect of three major fertilizers with YA03 inoculation on alfalfa yield and soil rhizobial population was in the order of $N+P_2O_5+K_2O>P_2O_5+K_2O>P_2O_5+K_2O$. 5. On the whole, alfalfa yield by acid tolerant R. meliloti YA03 inoculation on hilly acid soil was enhanced with nitrogen application, and besides it appeared 44% higher with lime than without lime.

  • PDF