Browse > Article
http://dx.doi.org/10.4014/jmb.1111.11042

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons  

Ng, Shee Ping (Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology)
Palombo, Enzo A. (Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology)
Bhave, Mrinal (Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.6, 2012 , pp. 742-753 More about this Journal
Abstract
Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.
Keywords
Heavy metals; copper; mer; cop; two-component signal transduction; genomic island;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Lee, Y. A., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: Homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 176: 173-188.
2 Leedjarv, A., A. Ivask, and M. Virta. 2008. Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J. Bacteriol. 190: 2680-2689.   DOI   ScienceOn
3 Lim, C. K. and D. A. Cooksey. 1993. Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J. Bacteriol. 175: 4492-4498.
4 Mellano, M. A. and D. A. Cooksey. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170: 2879-2883.
5 Mergeay, M., S. Monchy, P. Janssen, R. Houdt, and N. Leys. 2009. Megaplasmids in Cupriavidus genus and metal resistance, pp. 209-238. In E. Schwartz (ed.). Microbial Megaplasmids. Springer, Berlin.
6 Mergeay, M., S. Monchy, T. Vallaeys, V. Auquier, A. Benotmane, P. Bertin, et al. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385-410.   DOI   ScienceOn
7 Mergeay, M., D. Nies, H. G. Schlegel, J. Gerits, P. Charles, and F. Van Gijsegem. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328-334.
8 Messerschmidt, A., R. Ladenstein, R. Huber, M. Bolognesi, L. Avigliano, R. Petruzzelli, et al. 1992. Refined crystal structure of ascorbate oxidase at 1.9 ${\AA}$ resolution. J. Mol. Biol. 224: 179-205.   DOI
9 Rensing, C. and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment FEMS Microbiol. Rev. 27: 197-213.   DOI   ScienceOn
10 Rouch, D. A. and N. L. Brown. 1997. Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143: 1191-1202.   DOI   ScienceOn
11 Sarret, G., A. Favier, J. Coves, J.-L. Hazemann, M. Mergeay, and B. Bersch. 2010. CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: Characterization by X-ray absorption and NMR spectroscopy. J. Am. Chem. Soc. 132: 3770-3777.   DOI   ScienceOn
12 Schleheck, D., T. P. Knepper, K. Fischer, and A. M. Cook. 2004. Mineralisation of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl. Environ. Microbiol. 70: 4053-4063.   DOI   ScienceOn
13 Solioz, M. and A. Odermatt. 1995. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270: 9217-9221.   DOI   ScienceOn
14 Stock, A. M., J. M. Mottonen, J. B. Stock, and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337: 745-749.   DOI   ScienceOn
15 Teitzel, G. M. and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69: 2313-2320.   DOI   ScienceOn
16 Teixeira, E. C., J. C. Franco de Oliveira, M. T. Marques Novo, and M. C. Bertolini. 2008. The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: Gene inactivation results in copper sensitivity. Microbiology 154: 402-412.   DOI   ScienceOn
17 Bersch, B., A. Favier, P. Schanda, S. van Aelst, T. Vallaeys, J. Coves, et al. 2008. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge. J. Mol. Biol. 380: 386-403.   DOI   ScienceOn
18 Adaikkalam, V. and S. Swarup. 2005. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Can. J. Microbiol. 51: 209-216.   DOI   ScienceOn
19 Arnesano, F., L. Banci, I. Bertini, S. Mangani, and A. R. Thompsett. 2003. A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc. Natl. Acad. Sci. USA 100: 3814-3819.   DOI   ScienceOn
20 Basim, H., G. V. Minsavage, R. E. Stall, J.-F. Wang, S. Shanker, and J. B. Jones. 2005. Characterisation of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 71: 8284-8291.   DOI   ScienceOn
21 Bontidean, I., A. Mortari, S. Leth, N. L. Brown, U. Karlson, M. M. Larsen, et al. 2004. Biosensors for detection of mercury in contaminated soils. Environ. Pollut. 131: 255-262.   DOI   ScienceOn
22 Brown, N. L., S. R. Barrett, J. Camakaris, B. T. Lee, and D. A. Rouch. 1995. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17: 1153-1166.   DOI   ScienceOn
23 Cha, J. S. and D. A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915-8919.   DOI   ScienceOn
24 Chen, S., E. Kim, M. L. Shuler, and D. B. Wilson. 1998. $Hg^{2+}$ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol. Prog. 14: 667-671.   DOI   ScienceOn
25 Cooksey, D. A. 1993. Copper uptake and resistance in bacteria. Mol. Microbiol. 7: 1-5.   DOI   ScienceOn
26 Djoko, K. Y., Z. Xiao, and A. G. Wedd. 2008. Copper resistance in E. coli: The multicopper oxidase PcoA catalyzes oxidation of copper(I) in $Cu^ICu^{II}$-PcoC. ChemBioChem 9: 1579-1582.   DOI   ScienceOn
27 Deng, X. and D. B. Wilson. 2001. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 56: 276-279.   DOI   ScienceOn
28 Diels, L., Q. Dong, D. van der Lelie, W. Baeyens, and M. Mergeay. 1995. The czc operon of Alcaligenes eutrophus CH34: From resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14: 142-153.   DOI   ScienceOn
29 Djoko, K. Y., Z. Xiao, D. L. Huffman, and A. G. Wedd. 2007. Conserved mechanism of copper binding and transfer. A comparison of the copper-resistance proteins PcoC from Escherichia coli and CopC from Pseudomonas syringae. Inorg. Chem. 46: 4560-4568.   DOI   ScienceOn
30 Dorsey, A. and L. Ingerman. 2004. Toxicology Profile for Copper. Agency for Toxic Substances and Disease Registry.
31 Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652.   DOI   ScienceOn
32 Forst, S., J. Delgado, and M. Inouye. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 6052-6056.   DOI   ScienceOn
33 Grass, G. and C. Rensing. 2001. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286: 902-908.   DOI   ScienceOn
34 Gupta, A., K. Matsui, J. F. Lo, and S. Silver. 1999. Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5: 183-188.   DOI   ScienceOn
35 Huffman, D. L., J. Huyett, F. W. Outten, P. E. Doan, L. A. Finney, B. M. Hoffman, and T. V. O'Halloran. 2002. Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41: 10046-10055.   DOI   ScienceOn
36 Harley, C. B. and R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucl. Acids Res. 15: 2343-2361.   DOI   ScienceOn
37 Hettler, J., G. Irion, and B. Lehmann. 1997. Environmental impact of mining waste disposal on a tropical lowland river system: A case study on the Ok Tedi Mine, Papua New Guinea. Mineral. Depos. 32: 280-291.   DOI   ScienceOn
38 Huang, C.-C., M. Narita, T. Yamagata, Y. Itoh, and G. Endo. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234: 361-369.   DOI   ScienceOn
39 Kataoka, K., H. Komori, Y. Ueki, Y. Konno, Y. Kamitaka, S. Kurose, et al. 2007. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli - deletion of the methionine-rich helical region covering the substrate-binding site. J. Mol. Biol. 373: 141-152.   DOI   ScienceOn
40 Kholodii, G., O. V. Yurieva, O. L. Lomovskaya, Z. Gorlenko, S. Z. Mindlin, and V. G. Nikiforov. 1993. Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230: 1103-1107.   DOI   ScienceOn
41 Lee, S. M., G. Grass, C. Rensing, S. R. Barrett, C. J. Yates, J. V. Stoyanov, and N. L. Brown. 2002. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem. Biophys. Res. Commun. 295: 616-620.   DOI   ScienceOn
42 Munson, G. P., D. L. Lam, F. W. Outten, and T. V. O'Halloran. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182: 5864-5871.   DOI   ScienceOn
43 Mills, S. D., C. K. Lim, and D. A. Cooksey. 1994. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol. Gen. Genet. 244: 341-351.
44 Monchy, S., M. A. Benotmane, R. Wattiez, S. van Aelst, V. Auquier, B. Borremans, et al. 2006. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152: 1765-1776.   DOI   ScienceOn
45 Multhaup, G., D. Strausak, K.-D. Bissig, and M. Solioz. 2001. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem. Biophys. Res. Commun. 288: 172-177.   DOI   ScienceOn
46 Ng, S. P., B. Davis, E. A. Palombo, and M. Bhave. 2009. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res. Notes 2: 38.   DOI   ScienceOn
47 Outten, F. W., D. L. Huffman, J. A. Hale, and T. V. O'Halloran. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276: 30670-30677.   DOI   ScienceOn
48 Park, H., S. K. Saha, and M. Inouye. 1998. Two-domain reconstitution of a functional protein histidine kinase. Proc. Natl. Acad. Sci. USA 95: 6728-6732.   DOI   ScienceOn
49 Rensing, C., B. Fan, R. Sharma, B. Mitra, and B. P. Rosen. 2000. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97: 652-656.   DOI   ScienceOn
50 Trajanovska, S., M. L. Britz, and M. Bhave. 1997. Detection of heavy metal ion resistance genes in Gram-positive and Gramnegative bacteria isolated from a lead-contaminated site. Biodegradation 8: 113-124.   DOI   ScienceOn
51 Van Houdt, R., S. Monchy, N. Leys, and M. Mergeay. 2009. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96: 205-226.   DOI   ScienceOn
52 Voloudakis, A. E., T. M. Reignier, and D. A. Cooksey. 2005. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl. Environ. Microbiol. 71: 782-789.   DOI   ScienceOn
53 Yamamoto, K. and A. Ishihama. 2005. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56: 215-227.   DOI   ScienceOn
54 Zhang, L., M. Koay, M. J. Maher, Z. Xiao, and A. G. Wedd. 2006. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded $Cu^ICu^{II}$ forms. J. Am. Chem. Soc. 128: 5834-5850.   DOI   ScienceOn