• Title/Summary/Keyword: Soil chemicals

Search Result 370, Processing Time 0.027 seconds

Performance Test for the Long Distance Sprayer by an Image Processing (영상처리를 이용한 광역방제기 팬의 성능실험)

  • Min, B.R.;Kim, D.W.;Seo, K.W.;Hong, J.T.;Kim, W.;Choi, J.H.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • This research was carried out to test and analyze capacity of the long distance sprayer fan in large livestock farmhouses. Long distance sprayer was manufactured to be able to spray a lot of water, which was a solvent for agricultural chemicals and black dye with the maximum spraying distance of 140 m and the effective spraying distance of 100 m. The spraying quantity and the distance were measured the intensity values of images within A4 papers, which absorbed the agricultural chemicals by spraying by binary image processing. These A4 papers were fixed upon the height of 1 m from soil ground at regular 10 m interval. After the A4 papers were collected and analyzed the intensity values of gray level. Gray level was ranged from 0 to 255, where 0 was black and 255 was white. A4 paper was fallen down from the stick at 10 m distance, because there were too large amount of sprayed water with black dye. Also, the paper showed low gray level at distance 30 m because of dropping lots of black water. The intensity value of gray level was showed almost less than 200 on the A4 papers between the distance 20 m and 100 m, which meant equality of spraying quantity. Additionally, it was possible to spay agricultural chemicals of until 180 m. Throughout this research, long distance sprayer could apply for preventing hoof-and-mouth disease in large livestock farmhouses.

  • PDF

Effects of four substances requiring preparation for accidents on the survival and reproduction of Paronychiurus kimi (Collembola: Onychiuridae) (사고대비물질 4종이 김어리톡토기의 사망 및 번식에 미치는 영향)

  • Wee, June;Lee, Yun-Sik;Son, Jino;Ko, Euna;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.749-758
    • /
    • 2019
  • The aim of this study is to provide a scientific basis for decision making regarding environmental damage in case of future chemical accidents by evaluating the ecotoxicity of 4 substances requiring preparation for accidents. For this purpose, acute and chronic toxicities of nitric acid, sulfuric acid, hydrogen peroxide, and ammonia solution, which can change the physical and chemical properties of soil to Paronychiurus kimi(Collembola) were investigated. The pH of artificial soil spiked with a series of test chemical concentrations was also measured. The pH of soil spiked with 10,000 mg kg-1 of soil nitric acid, sulfuric acid, hydrogen peroxide, and ammonia solution were 2.86, 2.72, 7.18 and 9.69, respectively. The 28-d LC50 of nitric acid, sulfuric acid, hydrogen peroxide and ammonia solution were 2,703, 5,414, 3,158 and 859 mg kg-1 soil dry wt., respectively and 28-d EC50 were 587, 2,148, 1,300 and 216 mg kg-1 soil dry wt., respectively. These results indicated that the mortality and juvenile production of P. kimi were influenced by not only the soil pH but also by the reduced organic content and products produced by the reaction of soil with the tested chemicals. Given the fact that most substances requiring preparation for accidents can change soil characteristics, assessment and restoration methods that take into account changes in soil properties are needed for accurate decision making after chemical accidents.

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

The Effect of Anaerobic Fermentation Treatment of Wheat bran on the Root-Knot Nematodes and the Quality of Melons in Plastic Film House Soil (밀기울 토양 혐기발효 처리가 멜론의 뿌리혹선충 방제 및 품질에 미치는 영향)

  • Park, Dong-Kum;Kim, Hong-Lim;Park, Kyoung-Sub;Huh, Yun-Chan;Lee, Woo-Moon;Lee, Hee-Ju
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • This study was conducted to investigate the effect of anaerobic fermentation of wheat bran to prevent root-knot nematodes which are infected in plastic house due to over 10 years continuous cultivation of fruits and vegetables. Anaerobic fermentation treatment of wheat bran was done for 20 days by mixture of 2,000 kg fresh wheat bran per 10 are and soil with water in 30 cm soil depth. Chemical treatment of fosthiazate was done by mixture of 6 kg soil for 7 days. Both treatments show suppression of density of rootknot nematodes, especially in anaerobic fermentation treatment. Anaerobic fermentation treatment keeps the low level of root-knot nematode density until 90 days of cultivation and also showed good effect of melon growth. Related with death percentage of melon plant, anaerobic fermentation treatment shows only 3% and also large size of quality fruit but control 65%. Anaerobic fermentation treatment of wheat bran have proved to control the level of root-knot nematodes instead of synthetic chemicals for at least one cropping season and it showed good effect to fruit quality.

Release of Carbofuran from Granular Formulations in Water and Its Degradation Patterns in Soils (Carbofuran 입제(粒劑)의 수중용출(수중용출)과 토양중(土壤中) 분해특성(分解特性))

  • Hong, Moo-Ki;Hong, Jong-Uck
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.2
    • /
    • pp.9-15
    • /
    • 1984
  • Experiments were carried out with purified technical grade and two types of impregnated and sand-coated granules of carbofuran, in order to investigate the release patterns in water and the persistence of this chemical in soils. The results obtained are summarized as follows: 1) As regards to release velocity in water, impregnated granule was found to be faster than sand-coated granule. The time to reach maximum concentrations of carbofuran in water from technical carbofuran, impregnated granule and sand-coated granule was 0.5, 3 and 5 days, respectively. 2) Degradation rate of carbofuran in soils decreased in the order of technical carbofuran, impregnated granule, sand-coated granule regardless of soil types and application rates. Degradation of carbofuran in flooded soil was faster than in non-flooded soil. Soil flooding appeared to be the main factor in promoting the degradation of carbofuran in the soil. 3) When carbofuran was fortified in soils in the form of technical carbofuran, impregnated granule or sand-coated granule, the persistencies of two terminal residues of carbofuran, that is, 3-hydroxy carbofuran and 3-keto carbofuran decreased in the order of sand-coated granule, impregnated granule and technical form.

  • PDF

Degradation of Fungicide Tolclofos-methyl by Chemical Treatment (살균제 Tolclofos-methyl의 화학적 처리에 의한 분해)

  • Shin, Kab-Sik;Jeon, Young-Hwan;Kim, Hyo-Young;Hwang, Jung-In;Lee, Sang-Man;Shin, Jae-Ho;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.396-401
    • /
    • 2010
  • Tolclofos-methyl is one of the most widely used organophosphorous pesticides in control of soil-borne diseases in ginseng field. In Korea, residues of tolclofosmethyl in ginseng and cultivation soil is quite often detecting. The objective of this study was to know the possibility for the accelerated degradation of tolclofos-methyl by various chemical treatment under soil slurry condition. The degradation of tolclofos-methyl was accelerated by zerovalent metals treatment in soil slurry. The degradation rate of tolclofos-methyl was found to be at higher zerovalent zinc than unannealed zerovalent and annealed zerovalent iron. The effect of different sizes of zerovalent iron on tolclofos-methyl degradation was showed that the smaller size of zerovalent iron, the greater the degradation rate. In aqueous solution of pH 4.0 below the degradation rate of tolclofos-methyl was very high. Under this experimental condition, tolclofos-methyl degradation was the greatest at 2% (w/v) of ZVI under 0.1 N of HCl in 24 hours, the degradation rate was 94.4%. By testing various chemicals, it was found that $Fe_2(SO_4)_3$ as iron source showed better for degrading tolclofos-methyl in $H_2O_2$ 500 mM treatment and sodium sulfite also showed the degradable possibility tolclofos-methyl in soil slurry.

Effect of Irrigation Water Salinization on Salt Accumulation of Plastic Film House Soil around Sumjin River Estuary (섬진강 하구 관개용수 염화에 의한 시설재배단지 토양의 염류집적 심화)

  • Lee, Seul-Bi;Hong, Chang-Oh;Oh, Ju-Hwan;Gutierrez, Jessie;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2008
  • The causes of salt accumulation in soils of plastic film houses nearby Sumjin river estuary in Mokdo-ri($127^{\circ}46'E\;35^{\circ}1'N$), Hadong, Gyeongnam, Korea were investigated in 2006. With chemical properties soils and water analyzed and fertilization status monitored, the study showed that mean salt concentration of soil was much higher at EC $4.3\;dS\;m^{-1}$ than the Korean average (EC $2.9\;dS\;m^{-1}$) in 2000s for plastic film house's soil with exchangeable Na $0.8\;cmol^+\;kg^{-1}$ and water-soluble Cl $232\;mg\;kg^{-1}$, and then might result to salt damage in sensitive crop plants. Salt concentration of ground water used as main irrigation water source contained very high EC with corresponding value of $2.6\;dS\;m^{-1}$. Particularly, increase of EC value was directly proportional with the increased pumping of ground water used as a water-covering system in order to protect the temperature inside plastic film houses from the early winter season. High Na and Cl portion of ions in water might had contributed to the specific ion damage in the crops. Secondly, heavy inputs of chemicals and composts significantly increased the accumulated salts in soil. Conclusively, salt accumulation might had been accelerated by use of salted-groundwater irrigation and heavy fertilization rate. To minimize this problem, ensuring good quality of irrigation water is essential as well as reducing fertilization level.

Effects of Microbial Fertilizer Included Aspergillus Ochraceus Group on Density of Soil Microorganism and Growth Responses and Yield of Cucumber (Aspergillus Ochraceus Group이 함유된 미생물제제(微生物製劑) 시용(施用)에 따른 토양미생물상 변화와 오이의 생장반응(生長反應) 및 수량(收量))

  • Song, Beom-Heon;Lee, Chul-Won;Chung, Bong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.405-411
    • /
    • 1999
  • Growth responses and yields of cucumber, the populations of soil microorganisms, and the control value of nematodes were examined with six different treatments of chemical fertilizer, compost, microbial fertilizer(MF), and the combined applications of NPK + MF and compost. Cucumber, Eunseong Bakdadaki cultivar, was cultivated in the greenhouse. Higher plant height was appeared with treatments of the combined application of NPK + compost and NPK + MF compared to other treatments, especially at the early growth until 20th day after transplanting. Also, higher number of opened flowers showed with the combined treatments of NPK + compost and NPK + MF than those with others. The control value of nematodes at 60th day after transplanting with treatments of MF and NPK + MF was about 39.0% and 61.6%, respectively. The density of soil microorganisms was higher in order of actinomycetes, bacteria, and fungus. Their densities were not clearly different with treatments. Fruit yields of cucumber with treatments of NPK, compost, microbial fertilizer, and additions of compost and microbial fertilizer to NPk were higher, about 40 to 60%, than that with the control. The highest fruit yield was with NPK + MF and next highest fruit yield was with NPK + compost. It is assumed that the combined application of chemical fertilizers, compost, and microbial fertilizers would be increased the plant productivity.

  • PDF

The Effect of Submergence on Phosphorus Adsorption Charcteristics in Soils I. Changes of Adsorption Maximum, Adsorption Equilibrium Constant and Heat of Adsorption (담수처리(湛水處理)가 토양(土壤)의 인산(燐酸) 흡착(吸着) 특성(特性)에 미치는 영향(影響) I. 최대(最大) 흡착량(吸着量), 흡착(吸着) 평형상수(平衡常數) 및 흡착열(吸着熱)의 변화(變化))

  • Kim, Chan-Sub;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.109-115
    • /
    • 1991
  • This study examines the effect of submergence on phosphorus adsorption characteristics in Gangseo(paddy soil), Yesan(non-cultivated soil), and Jungdong soil(upland soil). The soils were submerged with glucose sol'n at $28^{\circ}C$ for 17 days. After the submergence, the phosphorus adsorption was conducted at three temperatures(5, 25 and $45^{\circ}C$). The phosphorus adsorption maximum($X_m$) and the equilibrium constant(K) were obtained by Langmuir adsorption isotherm, and the heat of adsorption(${\Delta}H$) was calculated by van't Hoff's equiation. Results obtained are as follows ; 1. The amounts of adsorbed P were increased with temperature, but the effects of temperature on rate of P adsorption were very small in all three soils. 2. By submergence, $X_m$ were increased from 500mg P/kg to 850mg P/kg in Gangseo soil, from 1,850mg P/kg to 3,300mg P/kg in Yesan soil, and from 310mg P/kg to 670mg P/kg in Jungdong soil. But the effects of temperature on $X_m$ were very small in all three soils. 3. Submergence decreased K for Gangseo and Yesan soils, but increased for Jungdong soil. Whereas K were increased with temperature in all three soils. 4. By submergence, ${\Delta}H$ for Gangseo soil was greatly increased (from 2.2 Kcal/mole to 3.5 Kcal/mole), whereas that for Yesan soil changed little (from 5.7 Kcal/mole to 5.5 Kcal/mole). It was 4.4 Kcal/mole in submerged Jungdong soil.

  • PDF

Adsorption and movement of Alachlor and Chlorothalonil in the representative soil of Cheju Island (제주도 대표 토양에서 Alachlor와 Chlorothalonil의 흡착과 이동 연구)

  • Hyun, Hae-Nam;Oh, Sang-Sil;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.135-143
    • /
    • 1995
  • This study was conducted to investigate the adsorption characteristics, distribution coefficients, and movement of alachlor(2-chloro-2', 6'-dimethyl-N-(methoxymethyl) acetanilide) and chlorothalonil(tetrachloroisophthalonitrile) for the 3 soils sampled from major soil groups in Cheju Island. Namwon, Jeju, and Mureng soils used in this study were classified as black volcanic ash soil, dark brown volcanic ash soil and dark brown nonvolcanic soil, respectively. Organic carbon content and CEC of Namwon soil were very high and those of Mureung soil were very low. Linear and Freundlich adsorption isotherms were the best to fit the adsorption of alachlor and chlorothalonil in the soils. K value, Freundlich coefficient, of alachlor for Namwon soil was 21.38, being 5.4 and 97.2 times higher than that for Jeju and Mureung soils respectively. The values of chlorothalonil for the soils were similar to those of alachlor but were much higher than them. When Mureung, Jeju and Namwon soil columns were leached with a solution containing 10.25 mg/l of alachlor and 1.50 mg/l of chlorothalonil, alachlor was first detected at 0.265, 0.47, and 1.86 pore volume (PV) and chlorothalonil was 3.71, 4.7 and 17.5 PV, respectively. The pore volumes at $C/C_o=1$ of alachlor in the leachates from Mureung, Jeju and Namwon soil columns were 1.1, 3.7 and 6.6 PV and those at $C/C_o=0.2$ of chlorothalonil were 7.5, 8.5 and 27.5, respectively. This means that the deceasing order of the mobility of the chemicals in soils was Mureung soil>Jeju soil${\gg}$Namwon soil. The pore volumes detecting $C/C_o=0.5$ of alachlor and $C/C_o=0.05$ of chlorothalonil in leachate were positively correlated with the distribution coefficients for the soils.

  • PDF