Browse > Article
http://dx.doi.org/10.5338/KJEA.2010.29.4.396

Degradation of Fungicide Tolclofos-methyl by Chemical Treatment  

Shin, Kab-Sik (School of Applied Biosciences, Kyungpook National University)
Jeon, Young-Hwan (School of Applied Biosciences, Kyungpook National University)
Kim, Hyo-Young (School of Applied Biosciences, Kyungpook National University)
Hwang, Jung-In (School of Applied Biosciences, Kyungpook National University)
Lee, Sang-Man (School of Applied Biosciences, Kyungpook National University)
Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University)
Kim, Jang-Eok (School of Applied Biosciences, Kyungpook National University)
Publication Information
Korean Journal of Environmental Agriculture / v.29, no.4, 2010 , pp. 396-401 More about this Journal
Abstract
Tolclofos-methyl is one of the most widely used organophosphorous pesticides in control of soil-borne diseases in ginseng field. In Korea, residues of tolclofosmethyl in ginseng and cultivation soil is quite often detecting. The objective of this study was to know the possibility for the accelerated degradation of tolclofos-methyl by various chemical treatment under soil slurry condition. The degradation of tolclofos-methyl was accelerated by zerovalent metals treatment in soil slurry. The degradation rate of tolclofos-methyl was found to be at higher zerovalent zinc than unannealed zerovalent and annealed zerovalent iron. The effect of different sizes of zerovalent iron on tolclofos-methyl degradation was showed that the smaller size of zerovalent iron, the greater the degradation rate. In aqueous solution of pH 4.0 below the degradation rate of tolclofos-methyl was very high. Under this experimental condition, tolclofos-methyl degradation was the greatest at 2% (w/v) of ZVI under 0.1 N of HCl in 24 hours, the degradation rate was 94.4%. By testing various chemicals, it was found that $Fe_2(SO_4)_3$ as iron source showed better for degrading tolclofos-methyl in $H_2O_2$ 500 mM treatment and sodium sulfite also showed the degradable possibility tolclofos-methyl in soil slurry.
Keywords
Degradation; Fenton reagent; Sodium bisulfite; Tolclofos-methyl; ZVMs;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Villa, R. D., Nogueira, R. F. P., 2006, Oxidation of p,p' -DDT and p,p'-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system, Sci.Total Envirion. 371, 11-18.   DOI   ScienceOn
2 Yun, J.K., Kim, T.H., Kim, J.E., 2008, Dechlorination of the fungicide chlorothalonil by zerovalent iron and manganese oxides, Korean J. Pestic. Sci. 12(1), 43-49.   과학기술학회마을
3 Liu, Y., Yang F., Yue, P. L., Chen G., 2001, Catalytic dechlorination of chlorophenols in waterby palladium/iron, Wat. Res. 35(8), 1887-1899.   DOI   ScienceOn
4 Min, Z.W., Kim, T.H., Shin, J.H., Lee, S.M., Kim, J.E., 2009, Accelerated effect of ferric salts on degradation of thiophosphate fungicide, tolclofos-methyl by zerovalent iron, J. Korean Soc. Appl. Biol. Chem. 52(6), 681-687.   과학기술학회마을   DOI   ScienceOn
5 Morales, J., Hutcheson, R., Cheng, I. F., 2002, Dechlorination of chlorinated phenols by catalyzed and un catalyzed Fe(0) and Mg(0) particles, J. Hazardous Mater. B90, 97-108.
6 Rahman, M.M., Kim, J.E., 2010, Remediation of water contaminated with herbicide oxadiazon using Fenton reagent, J. Korean Soc. Appl. Biol. Chem., 53(4), 458-463.   과학기술학회마을   DOI
7 Roberts, A. L., Totten, L. A. T., William, A. A., David, R. B., Timothy, J. C., 1996, Reductive elimination of chlorinated ethylenes by zero-valent metals, Envirion. Sci. Technol. 30(8), 2654-2659.   DOI   ScienceOn
8 Sarathy, V., Salter, A. J., Nurmi, J. T., Johnson, G. O., Johnson, R. L., Tratnyek, P. G., 2010, Degradation of 1,2,3-trichloropropane(TCP) : hydrolysis, elimination and reduction by iron and zinc, Envirion. Sci. Technol. 44, 787-793.   DOI   ScienceOn
9 Shea, P. J., Machacek, T.A., Comfort, S.D., 2004, Accelerated remediation of pesticide-contaminated soil with zerovalent iron, Environ. Pollut. 132, 183-188.   DOI   ScienceOn
10 Shin., H.S., Kim, T.K., Kim J.E., 2009, Dechlorination of organochlorine insecticide, endosulfan by zerovalent iron, Korean J. Environ. Agric. 28(2), 202-208.   과학기술학회마을   DOI   ScienceOn
11 Tomlin, C. D. S., 2006, The Pesticide Manual, fourteenth edition, BCPC, Hampshire, UK, pp. 1043-1044.
12 Bian, H., Chen, J., Cai, X., Liu P., Wang, Y., Huang, L., Qiao, X., Hao, C., 2009, Dechlorination of chloroacetanilide herbicides by plant growth regulator sodium bisulfite, Wat. Res. 43, 3556-3574.
13 Fennelly, J. P., Roberts, A. L., 1998, Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants, Envirion. Sci. Technol. 32(13), 1980-1988.   DOI   ScienceOn
14 Kim, B.H., Ahn, M.Y., Kim, J.E., 1999, Degradation of herbicide paraquat by Fenton reagent and UV light irradiation, Korean J. Pestic. Sci. 3(3), 20-26.   과학기술학회마을
15 Lee, J.H., Kim, Y.H., Jeon Y.H., Shin, K.S., Kim, H.Y., Kim, T.H., Park, C., Yu, Y.M., Kim, J.E., 2009, Residues amounts of cypermethrin and diethofencarb in ginseng sprayed by safe use guideline, Korean J. Environ. Agric., 28(4), 412-418.   과학기술학회마을   DOI   ScienceOn
16 Kim, J.E., Kim, T.H., Kim, Y.H., Lee, J.H., Kim, J.S., Paek, S.K., Choi, S.Y., Youn, Y.N., Yu, Y.M., 2008, Residues of tolclofos-methyl, azoxystrobin and difenoconazole in ginseng sprayed by safe use guideline, Korean J. Medical Crop Sci., 16(6), 390-396.   과학기술학회마을