DOI QR코드

DOI QR Code

Effects of four substances requiring preparation for accidents on the survival and reproduction of Paronychiurus kimi (Collembola: Onychiuridae)

사고대비물질 4종이 김어리톡토기의 사망 및 번식에 미치는 영향

  • Wee, June (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Yun-Sik (Ojeong Eco-Resilience Institute, Korea University) ;
  • Son, Jino (Ojeong Eco-Resilience Institute, Korea University) ;
  • Ko, Euna (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Cho, Kijong (Department of Environmental Science and Ecological Engineering, Korea University)
  • 위준 (고려대학교 환경생태공학과) ;
  • 이윤식 (오정에코리질리언스연구원) ;
  • 손진오 (오정에코리질리언스연구원) ;
  • 고은아 (고려대학교 환경생태공학과) ;
  • 조기종 (고려대학교 환경생태공학과)
  • Received : 2019.12.16
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

The aim of this study is to provide a scientific basis for decision making regarding environmental damage in case of future chemical accidents by evaluating the ecotoxicity of 4 substances requiring preparation for accidents. For this purpose, acute and chronic toxicities of nitric acid, sulfuric acid, hydrogen peroxide, and ammonia solution, which can change the physical and chemical properties of soil to Paronychiurus kimi(Collembola) were investigated. The pH of artificial soil spiked with a series of test chemical concentrations was also measured. The pH of soil spiked with 10,000 mg kg-1 of soil nitric acid, sulfuric acid, hydrogen peroxide, and ammonia solution were 2.86, 2.72, 7.18 and 9.69, respectively. The 28-d LC50 of nitric acid, sulfuric acid, hydrogen peroxide and ammonia solution were 2,703, 5,414, 3,158 and 859 mg kg-1 soil dry wt., respectively and 28-d EC50 were 587, 2,148, 1,300 and 216 mg kg-1 soil dry wt., respectively. These results indicated that the mortality and juvenile production of P. kimi were influenced by not only the soil pH but also by the reduced organic content and products produced by the reaction of soil with the tested chemicals. Given the fact that most substances requiring preparation for accidents can change soil characteristics, assessment and restoration methods that take into account changes in soil properties are needed for accurate decision making after chemical accidents.

본 연구의 목적은 질산, 황산, 암모니아수, 과산화수소에 대한 생태독성평가를 통해서 사고대비물질들에 대한 기초 독성 데이터베이스를 구축하여, 향후 화학사고 발생시 환경 피해에 관한 의사결정에 과학적 근거를 제공하는 데 있다. 이를 위해 본 연구에서는 사고대비물질 중 토양의 물리·화학적 성질을 변화시킬 수 있는 질산, 황산, 암모니아수, 과산화수소를 대상으로 국내 토착 절지동물인 김어리톡토기(Paronychiurus kimi)를 이용한 생태독성평가를 수행하였다. 7일간의 급성독성평가와 28일간의 만성독성평가를 수행하였으며, 시험물질 농도에 따른 토양의 pH 변화를 관찰하였다. 토양의 pH는 질산, 황산, 과산화수소, 암모니아수의 농도가 10,000 mg kg-1 soil dry wt.일 때, 각각 2.86, 2.72, 7.18, 9.69이었다. 질산, 황산, 과산화수소, 암모니아수에 대한 만성독성평가 결과, LC50 값은 각각 2,703, 5,414, 3,158, 859 mg kg-1 soil dry wt.이었으며, P. kimi의 산란 수에 대한 EC50 값은 각각 587, 2,148, 1,300, 216 mg kg-1 soil dry wt.이었다. 비록 본 연구에서는 사고대비물질들의 유입에 따른 토양 pH의 변화만이 조사되었지만, 본 연구의 결과는 P. kimi가 사고대비물질에 의해 변화된 토양의 pH뿐만 아니라 사고대비물질의 유입에 의해 감소된 유기물 함량과 생성된 반응 산물에 의해서도 사망률과 산란수에 영향을 받을 수 있음을 의미한다. 대부분의 사고대비물질들이 토양의 특성을 변화시킬 수 있다는 점을 감안할 때, 토양의 특성 변화와 이에 따른 생물 영향을 고려한 화학사고 후 평가 및 복원 방법이 필요하다.

Keywords

References

  1. Bissey LL, JL Smith and RJ Watts. 2006. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed $H_2O_2$ propagations (modified Fenton's reagent). Water Res. 40:2477-2484. https://doi.org/10.1016/j.watres.2006.05.009
  2. Cai J, W Luo, H Liu, X Feng, Y Zhang, R Wang, Z Xu, Y Zhang and Y Jiang. 2017. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semiarid grassland. Atmos. Environ. 170:312-318. https://doi.org/10.1016/j.atmosenv.2017.09.054
  3. Cha JM. 2019. A study on the range of damage effects of benzene leakage accidents using the KORA program. Fire Sci. Eng. 33:112-120.
  4. Chae Y, R Cui, J Lee and YJ An. 2020. Effects on photosynthesis and polyphenolic compounds in crop plant mung bean (Vigna radiata) following simulated accidental exposure to hydrogen peroxide. J. Hazard. Mater. 383:121088. https://doi.org/10.1016/j.jhazmat.2019.121088
  5. Choi WI, MI Ryoo and JG Kim. 2002. Biology of Paronychiurus kimi (Collembola: Onychiuridae) under the influence of temperature, humidity and nutrition. Pedobiologia 46:548-557. https://doi.org/10.1078/0031-4056-00159
  6. Coleman DC, MA Callaham and DA Crossley. 2017. Fundamentals of Soil Ecology. Academic Press, Cambridge, USA.
  7. Conyers MK and BG Davey. 1988. Observations on some routine methods for soil pH determination. Soil Sci. 145:29-36. https://doi.org/10.1097/00010694-198801000-00004
  8. Curtin D and S Trolove. 2013. Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Res. 6:494-502. https://doi.org/10.1071/SR13137
  9. Eaton RJ, M Barbercheck, M Buford and W Smith. 2004. Effects of organic matter removal, soil compaction, and vegetation control on Collembolan populations. Pedobiologia 48:121-128. https://doi.org/10.1016/j.pedobi.2003.10.001
  10. Engel MS and DA Grimaldi. 2004. New light shed on the oldest insect. Nature 427:627-630. https://doi.org/10.1038/nature02291
  11. Fountain MT and SP Hopkin. 2005. Folsomia candida (Collembola): a "standard" soil arthropod. Annu. Rev. Entomol. 50:201-222. https://doi.org/10.1146/annurev.ento.50.071803.130331
  12. Gil PM, R Ferreyra, C Barrera, C Zuniga and LA Gurovich. 2011. Improving soil oxygenation with hydrogen peroxide injection into heavy clay loam soil: effect on plant water status, $CO_2$ assimilation and biomass of avocado trees. Acta Hortic. 889:557-564. https://doi.org/10.17660/actahortic.2011.889.71
  13. Haanstra L, P Doelman and JH Voshaar. 1985. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293-297. https://doi.org/10.1007/BF02143194
  14. Hutson BR. 1978. Influence of pH, temperature and salinity on the fecundity and longevity of four species of Collembola. Pedobiologia 18:163-179.
  15. Jaeger G and G Eisenbeis. 1984. pH-dependent absorption of solutions by the ventral tube of Tomocerus flavescens (Tullberg, 1871) (Insecta, Collembola). Rev. Ecol. Biol. Sol. 21:519-531.
  16. Jeon I, J Jung and K Nam. 2017. Changes in soil properties related to soil function due to chemical spills with strong acid and base. Ecol. Resil. Infrastruct. 4:193-199. https://doi.org/10.17820/ERI.2017.4.4.193
  17. Jonsson KI, G Herczeg, RB O'Hara, F Soderman, AF Ter Schure, P Larsson and J Merila. 2009. Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradient. Ecography 32:831-839. https://doi.org/10.1111/j.1600-0587.2009.05352.x
  18. Kang S, WI Choi and MI Ryoo. 2001. Demography of Paronychiurus kimi (Lee) (Collembola: Onychiuridae) under the influence of glufosinate-ammonium on plaster charcoal substrate and in artificial soil. Appl. Soil Ecol. 18:39-45. https://doi.org/10.1016/S0929-1393(01)00150-0
  19. Ke X, Y Yang, W Yin and L Xue. 2004. Effects of low pH environment on the collembolan Onychiurus yaodai. Pedobiologia 48:545-550. https://doi.org/10.1016/j.pedobi.2004.07.001
  20. KEI. 2013. A Study on the Improvement of Environmental Impact Assessment of Industrial Complexes Based on Risk Assessment of Chemical Leakage Accidents. Korea Environment Institute, Sejong.
  21. Leifeld J and I Kogel-Knabner. 2001. Organic carbon and nitrogen in fine soil fractions after treatment with hydrogen peroxide. Soil Biol. Biochem. 33:2155-2158. https://doi.org/10.1016/S0038-0717(01)00127-4
  22. Leys C, C Ley, O Klein, P Bernard and L Licata. 2013. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49:764-766. https://doi.org/10.1016/j.jesp.2013.03.013
  23. Liu X, B Zhang, W Zhao, L Wang, D Xie, W Huo, Y Wu and J Zhang. 2017. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region. Sci. Total Environ. 601:669-678. https://doi.org/10.1016/j.scitotenv.2017.05.151
  24. Liu X, Z Fu, B Zhang, L Zhai, M Meng, J Lin, J Zhuang, G Wang and J Zhang. 2018. Effects of sulfuric, nitric, and mixed acid rain on Chinese fir sapling growth in Southern China. Ecotox. Environ. Safe. 160:154-161. https://doi.org/10.1016/j.ecoenv.2018.04.071
  25. Lv Y, C Wang, Y Jia, W Wang, X Ma, J Du, G Pu and X Tian. 2014. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Appl. Soil Ecol. 79:1-9. https://doi.org/10.1016/j.apsoil.2013.12.002
  26. McCauley A, C Jones and J Jacobsen. 2009. Soil pH and organic matter. pp 1-12. In Nutrient management module 8, #4449-8. Montana State University Extension Service, Bozeman, MT, USA.
  27. ME. 2013. Chemical Control Act. Ministry of Environment, Sejong, Korea.
  28. NIER. 2013. A Study on the Method of Environmental Impact Investigation by Accident of Acidic Chemicals (#11-1480523-001642-01). National Institute of Environmental Research, Incheon, Korea.
  29. Nunoshiba T, F Obata, AC Boss, S Oikawa, T Mori, S Kawanishi and K Yamamoto. 1999. Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J. Biol. Chem. 274:34832-34837. https://doi.org/10.1074/jbc.274.49.34832
  30. OECD. 2016. OECD Guidelines for Testing Chemicals No. 232. Collembolan Reproduction Test in Soil. Organization for Economic Co-operation and Development, Paris, France.
  31. Petigara BR, NV Blough and AC Mignerey. 2002. Mechanisms of hydrogen peroxide decomposition in soils. Environ. Sci. Technol. 36:639-645. https://doi.org/10.1021/es001726y
  32. Shin IP, CW Kim, D Kwak, ES Yoon and T Kim. 2018. Cellular automata simulation system for emergency response to the dispersion of accidental chemical releases. KIGAS 22:136-143.
  33. Snider RJ, JH Shaddy and JW Butcher. 1969. Culture techniques for rearing soil arthropods. Mich. Entomol. 1:357-362.
  34. Son J, HH Mo, JH Kim, MI Ryoo and K Cho. 2007. Effect of soil organic matter content and pH on toxicity of cadmium to Paronychiurus kimi (Lee) (Collembola). J. Asia-Pac. Entomol. 10:55-61. https://doi.org/10.1016/S1226-8615(08)60331-3
  35. Son J, KI Shin and K Cho. 2009. Response surface model for predicting chronic toxicity of cadmium to Paronychiurus kimi (Collembola), with a special emphasis on the importance of soil characteristics in the reproduction test. Chemosphere 77:889-894. https://doi.org/10.1016/j.chemosphere.2009.08.047
  36. Son J, Y Lee, Y Kim, J Wee, E Ko and K Cho. 2019. Excess zinc uptake in Paronychiurus kimi (Collembola) induces toxic effects at the individual and population levels. Korean J. Environ. Biol. 37:335-342. https://doi.org/10.11626/KJEB.2019.37.3.335
  37. van Gestel CAM and PJ Hensbergen. 1997. Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environ. Toxicol. Chem. 16:1177-1186. https://doi.org/10.1897/1551-5028(1997)016<1177:IOCAZT>2.3.CO;2
  38. van Straalen NM and HA Verhoef. 1997. The development of a bioindicator system for soil acidity based on arthropod pH preferences. J. Appl. Ecol. 34:217-232. https://doi.org/10.2307/2404860
  39. Wee J, Y Lee, J Son, Y Kim, H Mo and K Cho. 2017. Effects of methyl ethyl ketone and methanol on the survival and reproduction of Paronychiurus kimi (Collembola: Onychiuridae). Korean J. Environ. Biol. 35:169-174. https://doi.org/10.11626/KJEB.2017.35.2.169
  40. Wei H, W Liu, J Zhang and Z Qin. 2017. Effects of simulated acid rain on soil fauna community composition and their ecological niches. Environ. Pollut. 220:460-468. https://doi.org/10.1016/j.envpol.2016.09.088