• Title/Summary/Keyword: Soil chemicals

Search Result 370, Processing Time 0.022 seconds

Chemical Soil Treatments for Nematode Control on Peanut (땅콩기생(寄生) 선충(線虫) 방제(防除)에 관(關)한 연구(硏究))

  • Choi, Young Eoun;Kim, Ho Yul
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.41-46
    • /
    • 1983
  • Nine species of plant parasitic nematodes, Aphelenchoides besseyi, Aphelenchus avenae, Criconemoides informis, Helicotylenchus dihystera, Meloidogyne arenaria, Meloidogyne hapla, Pratylenchus minyus and Tylenchus sp. Were found in peanut field in Korea. Chemicals used were; Telon C-17, Mocap 10G and Carbofuran 3G for control peanut parasitic nematodes. All chemicals reduced nematode populations but varied in effectiveness. Telon C-17 was especially effective against Meloidogyne hapla, the principal species on peanut and resulted in significant yield increased than the control. Plant height, number of branches and dry weight of peanut were increased over the nontreated control by chemical soil treatments.

  • PDF

Decrease in the Thickness of Capillary Fringe Induced by Surface Active Chemicals in the Groundwater (계면활성물질의 지하수적용에 의한 모관수대 두께의 감소)

  • Kim, Heonki;Shin, Seungyup;Yang, Haewon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2012
  • Capillary fringe divides the groundwater and the vadose zone controlling the diffusive mass transfer of contaminants and gases. The thickness of capillary fringe is of great importance for the rate of contaminant mass transfer across the capillary fringe. Application of surface active chemicals including surfactants and alcohol-based products into the subsurface environment changes the surface tension of the aqueous phase, which in turn, affects the thickness of the capillary fringe. In this study, a bench-scale model was used to assess the quantitative relationship between the surface tension and the thickness of the capillary fringe. An anionic surfactant (Sodium dodecylbenzene sulfonate, SDBS) and an aqueous solution of ethanol were used to control the surface tension of the groundwater. It was found that the thickness of the capillary fringe is directly proportional to the surface tension. The air entry pressures measured by the Tempe Pressure Cell at different surface tensions using SDBS (200 mg/L) and ethanol (20%, v/v) solutions were in good agreement with the thicknesses of the capillary fringe measured by the model. A simple method to correct the conventional Brooks-Corey model for estimating the air entry pressure was also presented.

An Forest Ecological Environment Impact Assessment of Forest Fire Suppression Chemicals - To Plants & Soil Organism - (산불 진화용 소화약제의 산림생태환경 영향 평가 - 식물 및 토양생물독성에 대하여 -)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Yoo, Se-Kuel;Na, Young-Eun;Choi, Won-Il;Kim, Eung-Sik;Jung, Ki-Chang
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.48-54
    • /
    • 2008
  • Forest fires occur the world over, with large-scale fires constantly breaking out. A suppressant a type of forest fire chemical is widely used to respond to fires rapidly and effectively. In general, suppressants used for fires have been divided into dry powder, liquid, foam, and gel type, according to physical form and use. This study has conducted toxicity tests relating to phytotoxicity(Pinus densiflora seed germination rate and mortality of containerized seedling), and soil organism toxicity(earthworm acute toxicity tests), of these suppressants, with the loaded stream suppressant for direct forest fire extinguishing a Loaded Stream and foam concentrates generally being used in Korea. From the results of the tests, the loaded stream and the foam concentrate had an effect on the toxicity levels. In the case of the loaded stream type, it was observed that toxicity indicating a 100% lethality rate was found among all toxicity test methods. Therefore, it is determined that forest ecology environmental toxicity impact assessments related to the suppressant used to extinguish forest fires are necessary in the near future.

Characteristics of Chlorination Byproducts and Aldehyde Occurrence in Bottled Tap Water (수돗물 병입수 중 염소소독부산물 및 aldehyde의 발생 특성)

  • Lee, Youn-Hee;Park, Ju-Hyun;Kim, Hyun-Koo;Ahn, Kyung-Hee;Kim, Tae-Seung;Kim, Dong-Hoon;Kwon, Oh-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.754-761
    • /
    • 2012
  • Several drinking water treatment plants (DWTPs) produce the bottled tap waters (BTWs) as pilot production and provide them for noncommercial use. In 2008, acetaldehyde and chloral hydrate were detected in some BTWs and the public worry over the safety of the water. In this study, the BTWs produced from 7 DWTPs were tested for 13 chemicals including disinfection byproducts (DBPs). The level of four trihalomethanes (THMs) were increased up to 15 days. The average concentration of them was 0.0075 mg/L at the time of bottling and it was increased to 0.0214 mg/L after 15 days. The average acetaldehyde concentration was 0.0406 mg/L at the time of bottling but it was went up to 0.2251 mg/L after 11 days and then decreased. Although the initial concentrations of DBPs were below the drinking water standard, we also traced them at different storage conditions. Temperature affected the formations of THMs and acetaldehyde concentrations significantly. While the average concentration of THMs ranged from 0.0113 to 0.0182 mg/L at $25^{\circ}C$, it was increased to 0.0132 ~ 0.0256 mg/L at $50^{\circ}C$. In case of acetaldehyde, concentration ranged from 0.0901 to 0.2251 mg/L at $25^{\circ}C$, it was increased to 0.3394 ~ 1.0591 mg/L at $50^{\circ}C$. Throughout the tests with 7 BTWs samples, none of the chemicals was exceeded the drinking water standard of Korea. Therefore, it is recommended to avoid the exposure of BTWs to sunlight or high temperature during distribution and storage.

Removal of Heavy Metal Contaminants from Cohesive Soil by Electrokinetics (Electrokinetic 기술에 의한 점성토의 중금속 오염물 제거)

  • 정하익;강병희
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-138
    • /
    • 1997
  • Electroosmotic tests were performed on saturated marine clay specimens contaminated with lead to investigate the efficiency of the electrokinetic technique for removal of heavy metals from the cohesive soils. For this purpose, testing program included variable conditions such as the concentration of lead (500, 5, 000, 50, 000mg/kg), the level of electrical current (10, 50, 100 mA), operating duration (5, 15, 30days), and the application of three dirtferent chemicals for enhancement in efficiency. The pH of inflow and outflow, electroosmotic flow and electrical conductivity during the test, and the pH and the concentration of lead across the specimen after the test are presented. Test results came to the conclusion that the electrokinetic technique was very effective to remove heavy metals such as lead from the contaminated cohesive soil. Adding ecetic acid at the cathod to dissolve the procipitates of lead hydroxide as found to be effective for the enhancement of the efficiency in remediation.

  • PDF

Verifications of Resistance to Phytophthora spp. in 2-year-old Citrus junos Cultivars and Related Specie

  • Kwack, Yong-Bum;Kim, Hong Lim;Kwak, Youn-Sig;Lee, Yong Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • Yuzu (Citrus junos) gummosis disease, caused by Phytophthora nicotianae, was first reported in 1997. As known in citrus, Phytophthora is the most fastidious soil-borne pathogen to control. In order to minimize its damage to Citrus spp., integrated pest management (IPM) approach, including fungicide chemicals and resistant cultivars, is necessary. Therefore, in this study we tried to evaluate tolerance of yuzu cultivars and its related species against yuzu Phytophthora. Trifoliate orange was evaluated as a susceptible host to yuzu Phytophthora by both mycelial growth onto extract media and immature fruit inoculation. However, in zoospores spray-inoculation on 2-year-old cuttings tree, trifoliate orange appeared to have a resistant property as showing less than 6% diseased leaf rate. Among yuzu cultivars only 'Namhae No. 1' appeared resistant property against both P. nicotianae and P. citrophthora. The 'Namhae No. 1' showed 5.7% and 10.6% diseased leaf ratio by P. nicotianae and P. citrophthora, respectively. Clearly, in order to reduce damages caused by two yuzu Phytophthora, we suggest that growers may utilize a trifoliate orange as a rootstock and 'Namhae No. 1' as a scion for fruit production.

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Solute Transport Model with Cation Exchange under Redox Environment and its Application for Designing the Slow Infiltration Set-up

  • GUERRA, GINGGING;JINNO, KENJI;HIROSHIRO, YOSHINARI;NAKAMURA, KOJI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.90-101
    • /
    • 2004
  • The present trend of disposing treated sewage water by allowing it to infiltrate the soil brings a new dimension to environmental problems. It is therefore necessary to identify the chemicals likely to be present in treated sewage water. A soil column experiment was conducted to determine the behavior of chemical species in soil columns applied with secondary treated sewage water. To predict the behavior of chemical species, a multicomponent solute transport model that includes the biochemical redox process and cation exchange process was developed. The model computes changes in concentration over time caused by the processes of advection, dispersion, biochemical reactions and cation exchange reactions. The solute transport model was able to predict the behavior of the different chemical species. The model reproduced the sequential reduction reaction. To design the safe depth of plow layer where $NO_3^-$ is totally reduced, a numerical study of $NO_3^-$ leach was done and it was found out that the pore velocity and concentration of $CH_2O$ at the inject water was found to affect $NO_3^-$ reduction in the mobile pore water phase. It is revealed that the multicomponent solute transport model is useful to design the land treatment system for $NO_3^-$ removal from wastewater.

  • PDF

Assessing the Limits of Agricultural Situation for the Food Security in North Korea

  • Rhie, Ja-Hyun;Lee, Kyo-Suk;Seo, Il-Hwan;Min, Se-Won;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • The food situation in North Korea (Democratic People's Republic of Korea, DPRK) has been in difficulty situation because of a shortage of energy, and of raw materials such as fertilizer and agricultural chemicals. The international agricultural aid programs can alleviate some difficulties in the agricultural areas, but the policies and measures in North Korea can not help difficulties in the agriculture due to the institutional obstacles enforced by DPRK. The arable area of DPRK is approximately $20,000km^2$, of which $14,000km^2$ is well for cereal cultivation. Fertilizer supplies in recent years between 700,000 and 750,000 tons annually were less than 50% of the normal requirement. Also, North Korea strongly needed to inject phosphorus fertilizer and lime to increase the fertility. Soil degradation in DPRK was characterized by physical and chemical changes caused by rapid loss of clay particles and organic matter. Intensive ploughing and tilling to grow crops may lead to massive soil degradation and declining yields. Although farmers in the DPRK have faced numerous challenges, not least of which are soil erosion, scarce inputs and extreme weather like drought, flooding and cold spells. Therefore farmers should be encouraged to adopt more environmentally sound cropping practices, to access quality seeds and planting materials and to reduce losses after the harvest.

Evaluation of Surfactant Addition for Soil Remediation by Modeling Study : II. Bioremediation Process (계면활성제를 적용한 오염토양 복원을 위한 모델링 연구 : 생물 복원 공정)

  • 우승한;박종문
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.44-54
    • /
    • 2003
  • A kinetic model for evaluating effects of surfactant on the biodegradation of HOC(hazardous organic chemicals) in soil-slurry systems was developed. The model includes the partition of HOC and surfactant, the dissolved-, micellar-, and sorbed-phase biodegradation, the enhanced solubilization of HOC by surfactant addition, and the mass transfer of HOC. Phenanthrene as HOC and Trition X-100, Tergitol NP-10, Igepal CA-720, and Brij 30 were used in the model simulations. The biodegradation rate was increased even with a small micellera-phase bioavailability. The biodegradation was not greatly enhanced due to decreased aqueous HOC concentration by increasing surfactant dose in both cases with and without micellar-phase bioavailability. The effect of sorbed-phase biodegradation on total biodegradation rate was not highly important compared to aqueous- and micellar-phase biodegradation. The model can be applied for surfactant screening and optimal design of surfactant-based soil bioremediation process.