• 제목/요약/키워드: Soil carbon

검색결과 1,476건 처리시간 0.035초

연결성 분석을 활용한 산림의 주연부와 내부의 탄소저장량 비교 (Comparison of Carbon Stock Between Forest Edge and Core by Using Connectivity Analysis)

  • 성선용;이동근;모용원
    • 농촌계획
    • /
    • 제21권4호
    • /
    • pp.27-33
    • /
    • 2015
  • Forest ecosystem is considered as an important stepping stone to minimize the impact of climate change. However, the rapid urbanization has caused fragmentation of forest ecosystem. The fragmentation of forest patch results in edge effect which brings about adverse impacts on forest function and structure. Degradation of forest ecosystem decreases carbon sequestration because edge effect reduces productivity. Therefore, we analyzed the impact of forest edge effect on forest ecosystem carbon stock change in Seongnam-si, Gyeonggi-do. We used connectivity analysis to determine forest edge and core area. The field study sites were selected with considering forest age, density, class and soil type. Secondly, forest carbon stock was calculated with allometric equation. The soil carbon stock was derived from Walkely-Black method. Lastly, Mann-Whitney test was conducted to validate differences between carbon stock in edge and core area. As a result of study, the connectivity analysis was effective to determine forest edge and core. The core and edge of forest patch showed different composition of tree species and soil properties. Carbon stock per tree in the edge area was lower than that in the core area. However, the difference of soil organic carbon content between the edge and core were relatively small. This assessment can be applied for the conservation of forest patch as well as quantitative assessment on the forest carbon stock change caused by fragmentation.

혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향 (Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions)

  • 박종찬;정덕영;한광현
    • 한국토양비료학회지
    • /
    • 제45권2호
    • /
    • pp.260-265
    • /
    • 2012
  • 담수 토양에서의 토양호흡량은 호기 상태에 비해 매우 낮은 수준이나, 혐기 상태에서의 유기물의 분해는 담수 생태계의 탄소순환에 매우 중요한 역할을 한다. 한편, 비산회(fly ash), 석탄바닥재 (bottom ash)와 같은 석탄 연료 부산물들은 이산화탄소 발생을 저감하고 토양 탄소를 격리하는 효과가 있음이 보고된 바 있다. 이에 본 연구는 혐기조건 토양에서 석탄바닥재 단일 처리 및 석탄바닥재와 유기물 혼합 처리가 토양 미생물 호흡량 및 미생물 생체량 변화에 미치는 영향을 조사하였다. 이산화탄소 발생속도는 석탄바닥재 처리에 의해 유의하게 감소하였고, 처리수준에 따라서도 감소하는 것을 보였다. 유기물과 석탄바닥재를 혼합 처리하였을 때에도 발생속도가 감소되는 것을 확인하였다. 석탄바닥재 처리에 따라 토양미생물 생체량은 유의하게 증가하였고, 토양 중 암모니아태 질소, 질산태 질소, 유효인의 함량은 감소하는 경향이 있었다.

Separation of soil Organic Debris using Sucrose-ZnCl2 Density Gradient Centrifugation

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.30-36
    • /
    • 2012
  • The active fraction of soil organic matter, which includes organic debris and light organic fraction, plays a major role in nutrient cycling. In addition, particulate organic matter is a valuable index of labile soil organic matter and can reflect differences in various soil behaviors. Since soil organic matter bound to soil mineral particles has its density lower than soil minerals, we partitioned soil organic matter into debris ($<1.5g\;cm^{-3}$), light fraction ($1.5-2.0g\;cm^{-3}$), and heavy fraction ($>2.0g\;cm^{-3}$), based on high density $ZnCl_{2-}$ sucrose solutions. Generally, partitioned organic bands were clearly separated, demonstrating that the $ZnCl_{2-}$ sucrose solutions are useful for such a density gradient centrifugation. The available gradient ranges from 1.2 to $2.0g\;cm^{-3}$. Although there was not a statistically meaningful difference in organic debris and organomineral fractions among the examined soils, there was a general trend that a higher content of organic debris resulted in a higher proportion of light organomineral fraction. In addition, high clay content was associated with increased fraction of light organomineals. Partitioning of soil organic carbon revealed that carbon content is reduced in the heavy fraction than in the light fraction, reflecting that the light fraction contains more fresh and abundant carbon than the passive resistant fraction. It was also found that carbon contents in the overall organic matter, debris, light fraction, and heavy fractions may differ considerably in response to different farming practices.

외부탄소원으로 활성화된 토착미생물에 의한 화약물질(TNT and RDX) 분해 최적화 (Optimization of Explosive Compounds (TNT and RDX) Biodegradation by Indigenous Microorganisms Activated by External Carbon Source)

  • 박지은;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.56-65
    • /
    • 2014
  • Contamination of explosive compounds in the soils of military shooting range may pose risks to human and ecosystems. As shooting ranges are located at remote places, active remediation processes with hardwares and equipments are less practical to implement than natural solutions such as bioremediaton. In this study, a series of experiments was conducted to select a suitable carbon source and to optimize dosing rate for the enhanced bioremediation of explosive compounds in surface soils and sediments of shooting ranges with indigenous microorganisms activated by external carbon source. Treatability study using slurry phase reactors showed that the presence of indigenous microbial community capable of explosive compounds degradation in the shooting range soils, and starch was a more effective carbon source than glucose and acetic acid in the removal of TNT. However, at higher starch/soil ratio, i.e., 2.0, the acute toxicity of the liquid phase increased possibly due to transformation products of TNT. RDX degradation by indigenous microorganisms was also stimulated by the addition of starch but the acute toxicity of the liquid phase decreased with the increase of starch/soil ratio. Taken together, the optimum range of starch/soil ratio for the degradation of explosive compounds without significant increase in acute toxicity was found to be 0.2 of starch/soil.

Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.155-162
    • /
    • 2018
  • Background: In ecosystem carbon cycle studies, distinguishing between $CO_2$ emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil's temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil's temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

밭토양에서 퇴비시용과 비닐멀칭이 토양탄소 축적에 미치는 영향 (Effects of Compost Application and Plastic Mulching on Soil Carbon Sequestration in Upland Soil)

  • 강점순;서정민;신현무;조재환;홍창오
    • 한국환경농학회지
    • /
    • 제32권4호
    • /
    • pp.260-267
    • /
    • 2013
  • 본 연구는 고추재배시험 기간 동안 축분퇴비의 시용량과 비닐멀칭 유무에 따른 토양 유기탄소의 함량 변화와 토양 탄소의 안정화 정도를 조사하기 위해 실시되어졌다. 고추재배기간 동안 퇴비의 시용과 비닐멀칭 처리에 따라 토양 내 유기탄소 함량의 유의한 증가는 발견되어지지 않았다. 또한 퇴비시용과 비닐멀칭 처리에 의한 토양의 물리적 특성 변화는 관찰되지 않았다. 이러한 결과는 본 연구의 짧은 조사기간과 관련이 있는 것으로 판단된다. 그러나 퇴비의 시용에 의해 쉽게 분해 가능한 형태인 열수추출 가능한 탄소의 함량은 유의하게 감소하는 결과를 나타내었다. 추천량인 20 Mg/ha의 퇴비를 시용하였을 때 지하부의 바이오매스 함량이 최대를 나타내었다. 이상의 결과를 미루어 볼 때 장기적으로 추천량의 퇴비를 지속적으로 시용한다면 토양 유기탄소의 함량 증대와 안정화 정도를 향상시킬 수 있을 것으로 판단된다.

흑연(GRAPHITE)의 벼 생육에 미치는 영향 (Effect of Graphite on Rice Growth)

  • 황철원
    • 한국토양비료학회지
    • /
    • 제36권2호
    • /
    • pp.86-91
    • /
    • 2003
  • 흑연이나 활성탄등의 탄소물질이 작물의 생육을 촉진하며 유용 토양미생물의 생육을 촉진하는것으로 알려져 있어 본 실험에는 제철공정에서 재활용, 정제된 흑연을 상토의 첨가제로 시용하여 벼의 생육과 수량에 미치는 영향에 대하여 실험하였다. 실험결과, 이앙기의 생육은 대조구와 비교하여 0.1% 흑연 첨가구에서 생육 촉진효과가 보였으며 이앙후 처리구별 생육의 차이는 그다지 보이지 않았다. 다만 0.1% 첨가구에서 육묘한 벼의 수량은 특별한 통계적 유의성을 보이지 않았으나 약 1%정도 증수되었다.

마이크로파 조사와 발열체를 이용한 벙커C유 오염토양의 복원 (Remediation of Bunker Fuel Oil C Contaminated Soil with Microwave Radiation and Heating Elements)

  • 오다경;이태진
    • 대한환경공학회지
    • /
    • 제37권8호
    • /
    • pp.458-464
    • /
    • 2015
  • 본 연구에서는 사산화삼철과 활성탄을 발열체로 하여 벙커C유 오염토양에 마이크로파를 조사한 후 온도변화 양상 및 TPH 제거효율을 살펴보았다. 사산화삼철 및 활성탄 함유 오염토양에 100~500 Watt로 마이크로파를 조사하였을 때 승온율은 $1.4{\sim}1.6^{\circ}C/Watt$로 나타났다. 조사시간에 따른 온도의 변화는 활성탄보다 사산화삼철 함유토양에서 민감하게 나타났으며, 사산화삼철과 활성탄의 경우 발열체 함량이 각각 10% 이상과 25%에서 열탈착을 위한 충분한 온도가 확보될 수 있음을 관찰하였다. 사산화삼철은 평균 44.1%, 활성탄은 평균 89.4%의 TPH 제거 효율을 나타났으며, 벙커C유의 제거 양상은 활성탄이 함유되었을 때 사산화삼철 보다 고분자탄화수소의 휘발이 더욱 원활하게 진행되고 있음을 확인하였다.

도시녹지에 의한 대기 $Co_2$의 흡수 -춘천시를 대상으로- (Atmospheric $Co_2$sequestration by urban greenspace)

  • 조현길;윤영활;이기의
    • 한국조경학회지
    • /
    • 제23권3호
    • /
    • pp.80-93
    • /
    • 1995
  • The purpose of this study was to assess functioni fo urban greenspace to reduce atmospheric CO\sub 2\ concentration. The study quantified carbon storage in urban greenspace and carbon emission by fossil fuel consumptio in Chuncheon. The amount of carbon storage in vegetation by land use type was 0.02kg/$m^2$ for commercial land, 4.36kg/$m^2$ for natural land, and 0.54kg/$m^2$ for the other urban lands. In 1994, total amount of carbon emission by fossil fuel consumption was about 257,358 metric tons, and the per capita carbon emission was 1.4 metric ton. Total amount of carbon storage in vegetation was 42,942 metric tons, approximately 17% of the carbon emission. This study excluded quantification of carbon storage in soils. The role of urban greenspace to sequester atomspheric carbon might be much greater, if a soil greenspace to sequester atmospheric carbon might be much greater, if a soil greenspace to sequester atmospheric carbon might be much greater, if a soil carbon storage is included quantification of carbon storage is included. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy.

  • PDF

Chronological Changes of Soil Organic Carbon from 2003 to 2010 in Korea

  • Kim, Yoo Hak;Kang, Seong Soo;Kong, Myung Suk;Kim, Myung Sook;Sonn, Yeon Kyu;Chae, Mi Jin;Lee, Chang Hoon
    • 한국토양비료학회지
    • /
    • 제47권3호
    • /
    • pp.205-212
    • /
    • 2014
  • Chronological changes of soil organic carbon (SOC) must be prepared by IPCC guidelines for national greenhouse gas inventories. IPCC suggested default reference SOC stocks for mineral soils and relative stock factors for different management activities where country own factors were not prepared. 3.4 million data were downloaded from agricultural soil information system and analyzed to get chronological changes of SOC for some counties and for land use in Korea. SOC content of orchard soil was higher than the other soils but chronological SOC changes of all land use had no tendency in differences with high standard deviation. SOC contents of counties depended on their own management activities and chronological SOC changes of districts also had no tendency in differences. Thus, Korea should survey the official records and relative stock factors on management activities such as land use, tillage and input of organic matter to calculate SOC stocks correctly. Otherwise, Korea should establish a model for predicting SOC by analyzing selected representative fields and by calculating SOC differences from comparing management activities of lands with those of representative fields.