• Title/Summary/Keyword: Soil and vegetable

Search Result 266, Processing Time 0.027 seconds

Evaluation of K-Cabbage Model for Yield Prediction of Chinese Cabbage in Highland Areas (고랭지 배추 생산 예측을 위한 K-배추 모델 평가)

  • Seong Eun Lee;Hyun Hee Han;Kyung Hwan Moon;Dae Hyun Kim;Byung-Hyuk Kim;Sang Gyu Lee;Hee Ju Lee;Suhyun Ryu;Hyerim Lee;Joon Yong Shim;Yong Soon Shin;Mun Il Ahn;Hee Ae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.398-403
    • /
    • 2023
  • Process-based K-cabbage model is based on physiological processes such as photosynthesis and phenology, making it possible to predict crop growth under different climate conditions that have never been experienced before. Current first-stage process-based models can be used to assess climate impact through yield prediction based on climate change scenarios, but no comparison has been performed between big data obtained from the main production area and model prediction so far. The aim of this study was to find out the direction of model improvement when using the current model for yield prediction. For this purpose, model performance evaluation was conducted based on data collected from farmers growing 'Chungwang' cabbage in Taebaek and Samcheok, the main producing areas of Chinese cabbage in highland region. The farms surveyed in this study had different cultivation methods in terms of planting date and soil water and nutrient management. The results showed that the potential biomass estimated using the K-cabbage model exceeded the observed values in all cases. Although predictions and observations at the time of harvest did not show a complete positive correlation due to limitations caused by the use of fresh weight in the model evaluation process (R2=0.74, RMSE=866.4), when fitting the model based on the values 2 weeks before harvest, the growth suitability index was different for each farm. These results are suggested to be due to differences in soil properties and management practices between farms. Therefore, to predict attainable yields taking into account differences in soil and management practices between farms, it is necessary to integrate dynamic soil nutrient and moisture modules into crop models, rather than using arbitrary growth suitability indices in current K-cabbage model.

Analyzed Change of Soil Characteristics by Rainfall and Vegetation (강우 및 식생에 의한 토질특성 변화 분석)

  • Lee, Moon-Se;Kim, Kyeong-Su;Song, Young-Suk;Ryu, Je-Cheon
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • In this study, some changes of soil characteristics in a field were analyzed to investigate the effect of heavy rainfall during rainy season. The heavy rainfalls were often induced geohazards like landslides. To do this, the reaching rainfall in the ground surface was investigated according to a condition of vegetation, and the change of soil characteristics induced by infiltrating rainfall was analyzed. The study site is a natural terrain located in Daedeok Science Complex. This site has same geology and soil condition whereas it has different vegetable condition. The rainfall records during the rainy season of 2006 and 2007 were selected. The rainfall records are based on the measuring date from Daejeon Regional Meteorological Administration adjacent to the study site. Also, the rainfall records according to the condition of vegetation were measured using rainfall measuring device made by ourselves. The soil tests were carried out about soil specimen sampled before and after rainfall, and then the change of soil characteristics related to rainfall and vegetation were analyzed. As the result, the density of vegetation was influenced by reaching rainfall quantity in the ground surface, and its influence intensity was decreased with rainfall intensity and rainfall duration. Also, it shows that degree of saturations, water contents, liquidities and shear resistances are directly influenced by heavy rainfalls.

Recommendation of NPK Fertilizers for Chinese Cabbage and Spinach Based on Soil Testing (토양검정(土壤檢定)에 따른 배추와 시금치의 NPK 시비추천(施肥推薦))

  • Song, Yo-Sung;Lee, Choon-Soo;Kwak, Han-Kang;Park, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 1993
  • It is common that in the vegetable cultivation areas, the farmers tend to continue the heavy fertilization to maximize the crop yields in short term. This results in the accumulation of fertilizer elements in the soil and increase in the electrical conductivity of soil. Disregarding these, farmers continue to apply heavy doses of fertilizers. A field experiment was conducted to find out on such a soil whether fertilizer application taking the quantity of nutrients accumulated in the soil into account would save the fertilizer without losing the yield of crop, using Chinese cabbage and spinach as test crops. The findings of the experiment is summarized as following. 1. The yield of Chinese cabbage was not affected by reduction of $19kg\;P_2O_5/10a$ and $7kg\;K_2O/10a$ as compared to farmers doses, and in case of spinach the yield rather was increased under the reduction of $22kg\;P_2O_5/10a$ and $22kg\;K_2O/10a$. 2. The reduction of fertilizers according to plant nutrient status of soils did not affect the inorganic nutrient contents of the crops significantly, in both Chinese cabbage and spinach. 3. A trend was observed that the reduction in the P and K fertilizers application would shorten the storage period of Chinese cabbage. 4. The reduction in P and K fertilizers application resulted in the reduction in available P, exchangeable K, EC and $NO_3-N$ in the soil after the harvest of the crops.

  • PDF

Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater

  • Lee, Sung-Hun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1908-1914
    • /
    • 2008
  • An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-KI6 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cell-free extract (crude enzyme).

METHANOGENIC FERMENTATION OF FAT-CONTAINING WASTEWATER MEDIATED BY IRON

  • Zubair, A.;Ivanov, V.;Kim, In-S.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.109-112
    • /
    • 2000
  • Long chain fatty acids (LCFA) are potential inhibitors of bacteria involved in anaerobic digestion because of their surface activity. Precipitation of long-chain fatty acids with iron can improve the anaerobic degradation due to their precipitation and reducing surface properties. Degradation of stearic acid was improved in the presence of iron (II). The methane production was increased 1.6 times as compared to control. Iron-containing soil was applied for degradation of vegetable oil as model case. The methane production was increased 1.5 times as compared to control. Yield of methane production was 0.09 and 0.06L/g COD in experiment and control respectively. Optimum COD/Fe ratio was found 20 mg/mg. Iron (II) can be produced in the treatment system from iron (III) hydroxide or iron containing minerals.

  • PDF

Stem Rot of Garlic (Allium sativum) Caused by Sclerotium rolfsii

  • Kwon, Jin-Hyeuk
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.156-158
    • /
    • 2010
  • Stem rot disease was found in garlic (Allium sativum L.) cultivated from 2008 to 2010 in the vegetable gardens of some farmers in Geumsan-myon, Jinju City, Gyeongnam province in Korea. The initial symptoms of the disease were typical water-soaked spots, which progressed to rotting, wilting, blighting, and eventually death. White mycelial mats had spread over the lesions near the soil line, and sclerotia had formed over the mycelial mats on the stem. The sclerotia were globoid in shape, 1~3 mm in size, and tan to brown in color. The optimum temperature for growth and sclerotia formation on potato dextrose agar (PDA) medium was $30^{\circ}C$. The diameter of the hyphae ranged from approximately 4 to $8\;{\mu}m$. Typical clamp connection structures were observed in the hyphae of the fungus, which was grown on PDA medium for 4 days. On the basis of the mycological characteristics and pathogenicity of the fungus on the host plants, the causal agent was identified as Sclerotium rolfsii Saccardo. This is the first report of stem rot disease in garlic caused by S. rolfsii in Korea.

Study on Matter Production and Phothsynthetic Characteristics in Wild Vegetable(Chwinamul) (취나물류의 물질생산과 광합성특성에 관한 연구 II. 수분스트레스하에서 고온 및 저온처리가 취나물류의 광합성속도에 미치는 영향)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.307-314
    • /
    • 1998
  • The response of water stree under high and low temperatures, was shown differently according to the longer the suspension period of water supply. Leaf photosynthetic rate(LPS), leaf water potential(WP), relative leaf water content and relative soil water content were lower. At the higher temperatures, the percentate of reduction in LPS and WP was greater than at low temperatures. It is suggested that evaporation rate should be higher in the high temperature than the lower temperature. Also leaf water potential was lower at high temperature than at low temperature. After the 9 th day of treatment , LSP was remarkably reduced at high temperature, but the reduction of LPS was not significant at low temperature. Solidago virga-aurea var. asiatic that maintained LPS of 3rd day after treatment was more strong than other varieties at low temperatures. The silting and curling of leaves were observed symptoms of stress on the 9th day at the both temperatures. The leaves of aster scaber and Ligularia fischeri turned red on the 9th day after treatment at low temperature.

  • PDF

Biosurfactant 생산 효모 Rhodotorula sp. G-1의 분리 및 Biosurfactant 생산

  • 강상모;이철수;김영찬
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.185-190
    • /
    • 1996
  • Some microorganisms including yeasts produce surface tension-decreasing biosurfactants. The strain G-1, the best producer of biosurfatants was isolated from the soil and identified as Rhodotorula sp., which was not discribed any report. The Rhodotorula sp. G-1 produced biosurfactant from vegetable oils, but failed to produce it from n-alkane or carbohydrate. Yeast extract was found to be more effective for the biosurfactant production as nitrogen source than any other inorganic nitrogen source. The composion of the optimal medium contained the following conponents: soybean oil 4%, glucose 2%, yeast extract 0.5%, KH$^{2}$PO$^{4}$ 0.1%, K$^{2}$HP0$^{4}$ 0.l%, MgSO$^{4}$ 5%, CaCl$^{2}$ 0.01%, NaCl 0.01%, pH 6.0. The surface tension activity was increased to 14% when, at first, the culture broth was fermented with only soybean oil as carbon sourse, and after 90 hours, feeded glucose, than that Of glucose and soybean oil added to it simultaneously. The maxium yield of the biosurfactant was about 15 g/l by after 90 hours, the feeding method of glucose.

  • PDF

Heavy Metal Contents in Upland Soils and Crops of Korea (우리나라 밭 토양 및 작물의 중금속함량)

  • Jung, Goo-Bok;Kim, Ho-Chung;Jung, Ki-Yeol;Jung, Beung-Kan;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • In order to monitor the degree of heavy metal distribution in upland cultivations in Korea, both the cultivated soils and crops were collected from the 854 and 140 sites, respectively. The contents of cadmium (Cd), copper(Cu), lead(Pb), and zinc(Zn) in each sample were measured by Inductively Coupled Plasma(ICP) technique after 1N-HCl extraction. The content of Arsenic(As) was also measured with the same technique after 1N-HCl extraction. The average contents of heavy metal in surface soils(0~15 cm depth) were $0.135mg\;kg^{-1}$ for Cd, $2.77mg\;kg^{-1}$ for Cu, $3.47mg\;kg^{-1}$ for Pb, $10.7mg\;kg^{-1}$ for Zn, and $0.57mg\;kg^{-1}$ for As. Heavy metal contents of soil were similar to those values measured for upland soils in 1989, lower than soils under plastic film house in 1996. However, these contents were lower than "Countermeasure values for soil contamination"(Cd: 4, Cu: 125, Pb: 300, and As: $15mg\;kg^{-1}$ in soil) describled in Soil Environmental Conservation Act in Korea(1996). The contents of heavy metal in fresh vegetable, and root and tuber crops ranged $0.005{\sim}0.019mg\;kg^{-1}$ for Cd, $0.20{\sim}1.03mg\;kg^{-1}$ for Cu, $0.042{\sim}0.104mg\;kg^{-1}$ for Pb, and $2.0{\sim}4.0mg\;kg^{-1}$ for Zn, respectively.

  • PDF

Establishment of the Optimum Nitrogen Application Rates for Oriental Melon at Various Growth Stages with a Fertigation System in a Plastic Film House (시설 참외 관비재배시 생육단계별 질소시비기준 설정)

  • Jung, Kyu-Seok;Jung, Kang-Ho;Park, Woo-Kyun;Song, Yo-Sung;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.349-355
    • /
    • 2010
  • This experiment was conducted to establish the optimum nitrogen application level for oriental melon at Seong-ju Fruit Vegetable Experiment Station with a fertigation system. Four different levels of nitrogen fertigation were applied to oriental melon and growth of the plant was analyzed. Plant samples were collected 8 times and were analyzed by the standard methods. The first fertigation was applied at 10 days after transplanting for the oriental melon based on the growth rates of the plants. For oriental melon, 10 day interval fertigation and 8 time split application of fertilizer could be recommended. The amounts of N, P, and K fertilizer recommended by soil testing was 249-408-315 (kg $ha^{-1}$). Treatment levels were 0, 0.5, 1.0, and 1.5 times of soil testing nitrogen with P and K level fixed. The total nitrogen (T-N) content in dried leaf showed a tendency to increase until 30 days after transplanting, then decreased. T-N content increased with increasing nitrogen fertigation rates. T-N content in dried fruit decreased slightly during the whole growing season. Fresh weight and nitrogen uptake were increased with increasing nitrogen fertigation rates. Total yield and marketable yield, 44,550 kg $ha^{-1}$ and 42,880 kg $ha^{-1}$, were maximized at 0.5 times of soil test nitrogen. Ratio of marketable fruit, 95%, was the highest at 0.5 times of soil test nitrogen. The optimum level of nitrogen for fertigation system was 0.5 times soil test nitrogen judging from total yield, commodity yield and commodity fruit.